Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220836124> ?p ?o ?g. }
- W4220836124 abstract "The molecular biology of inverted urothelial papilloma (IUP) as a precursor disease of urothelial carcinoma is poorly understood. Furthermore, the overlapping histology between IUP and papillary urothelial carcinoma (PUC) with inverted growth is a diagnostic pitfall leading to frequent misdiagnoses.To identify the oncologic significance of IUP and discover a novel biomarker for its diagnosis, we employed mass spectrometry-based proteomic analysis of IUP, PUC, and normal urothelium (NU). Machine learning analysis shortlisted candidate proteins, while subsequent immunohistochemical validation was performed in an independent sample cohort.From the overall proteomic landscape, we found divergent 'NU-like' (low-risk) and 'PUC-like' (high-risk) signatures in IUP. The latter were characterized by altered metabolism, biosynthesis, and cell-cell interaction functions, indicating oncologic significance. Further machine learning-based analysis revealed SERPINH1, PKP2, and PYGB as potential diagnostic biomarkers discriminating IUP from PUC. The immunohistochemical validation confirmed PYGB as a specific biomarker to distinguish between IUP and PUC with inverted growth.In conclusion, we suggest PYGB as a promising immunohistochemical marker for IUP diagnosis in routine practice." @default.
- W4220836124 created "2022-04-03" @default.
- W4220836124 creator A5020847797 @default.
- W4220836124 creator A5022681695 @default.
- W4220836124 creator A5041612441 @default.
- W4220836124 creator A5052557750 @default.
- W4220836124 creator A5059420075 @default.
- W4220836124 creator A5061693687 @default.
- W4220836124 creator A5067845588 @default.
- W4220836124 creator A5078091681 @default.
- W4220836124 creator A5080619631 @default.
- W4220836124 creator A5088458910 @default.
- W4220836124 creator A5089043882 @default.
- W4220836124 creator A5089590792 @default.
- W4220836124 date "2022-03-24" @default.
- W4220836124 modified "2023-09-30" @default.
- W4220836124 title "Proteomic-Based Machine Learning Analysis Reveals PYGB as a Novel Immunohistochemical Biomarker to Distinguish Inverted Urothelial Papilloma From Low-Grade Papillary Urothelial Carcinoma With Inverted Growth" @default.
- W4220836124 cites W1509749402 @default.
- W4220836124 cites W1554586717 @default.
- W4220836124 cites W1970527559 @default.
- W4220836124 cites W1976487526 @default.
- W4220836124 cites W2010408018 @default.
- W4220836124 cites W2012034410 @default.
- W4220836124 cites W2029461987 @default.
- W4220836124 cites W2029862112 @default.
- W4220836124 cites W2036321220 @default.
- W4220836124 cites W2037340955 @default.
- W4220836124 cites W2048332634 @default.
- W4220836124 cites W2060883737 @default.
- W4220836124 cites W2061035319 @default.
- W4220836124 cites W2082071504 @default.
- W4220836124 cites W2093190808 @default.
- W4220836124 cites W2094010977 @default.
- W4220836124 cites W2106876831 @default.
- W4220836124 cites W2110729724 @default.
- W4220836124 cites W2114843025 @default.
- W4220836124 cites W2114918651 @default.
- W4220836124 cites W2124614719 @default.
- W4220836124 cites W2124649657 @default.
- W4220836124 cites W2128551987 @default.
- W4220836124 cites W2129215988 @default.
- W4220836124 cites W2134329490 @default.
- W4220836124 cites W2149441684 @default.
- W4220836124 cites W2159675211 @default.
- W4220836124 cites W2162143298 @default.
- W4220836124 cites W2168442313 @default.
- W4220836124 cites W2170540646 @default.
- W4220836124 cites W2184885683 @default.
- W4220836124 cites W2204462566 @default.
- W4220836124 cites W2209033931 @default.
- W4220836124 cites W2260700459 @default.
- W4220836124 cites W2301685087 @default.
- W4220836124 cites W2463195069 @default.
- W4220836124 cites W2465742431 @default.
- W4220836124 cites W2544360569 @default.
- W4220836124 cites W2590571433 @default.
- W4220836124 cites W2597719295 @default.
- W4220836124 cites W2618004756 @default.
- W4220836124 cites W2763670669 @default.
- W4220836124 cites W2783029521 @default.
- W4220836124 cites W2808739989 @default.
- W4220836124 cites W2810764565 @default.
- W4220836124 cites W2900569176 @default.
- W4220836124 cites W2912145600 @default.
- W4220836124 cites W2914931437 @default.
- W4220836124 cites W2922145435 @default.
- W4220836124 cites W2944907519 @default.
- W4220836124 cites W2945550220 @default.
- W4220836124 cites W2946406922 @default.
- W4220836124 cites W2947669544 @default.
- W4220836124 cites W2949313615 @default.
- W4220836124 cites W2952481429 @default.
- W4220836124 cites W2957235483 @default.
- W4220836124 cites W2971445256 @default.
- W4220836124 cites W2980546791 @default.
- W4220836124 cites W2990391139 @default.
- W4220836124 cites W3003542463 @default.
- W4220836124 cites W3017024303 @default.
- W4220836124 cites W3018860107 @default.
- W4220836124 cites W3020620972 @default.
- W4220836124 cites W3040018168 @default.
- W4220836124 cites W3092277280 @default.
- W4220836124 cites W3108138939 @default.
- W4220836124 cites W3119889993 @default.
- W4220836124 cites W3169557379 @default.
- W4220836124 cites W972968702 @default.
- W4220836124 doi "https://doi.org/10.3389/fonc.2022.841398" @default.
- W4220836124 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35402263" @default.
- W4220836124 hasPublicationYear "2022" @default.
- W4220836124 type Work @default.
- W4220836124 citedByCount "1" @default.
- W4220836124 countsByYear W42208361242023 @default.
- W4220836124 crossrefType "journal-article" @default.
- W4220836124 hasAuthorship W4220836124A5020847797 @default.
- W4220836124 hasAuthorship W4220836124A5022681695 @default.
- W4220836124 hasAuthorship W4220836124A5041612441 @default.
- W4220836124 hasAuthorship W4220836124A5052557750 @default.
- W4220836124 hasAuthorship W4220836124A5059420075 @default.
- W4220836124 hasAuthorship W4220836124A5061693687 @default.
- W4220836124 hasAuthorship W4220836124A5067845588 @default.