Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220844524> ?p ?o ?g. }
Showing items 1 to 37 of
37
with 100 items per page.
- W4220844524 endingPage "284" @default.
- W4220844524 startingPage "261" @default.
- W4220844524 abstract "Information Security in the cyber world is a major concern, with significant increase in attack surfaces. Existing information on vulnerabilities, attacks, controls, and advisories available on web provides an opportunity to represent knowledge and perform security analytics to mitigate some of the concerns. Representing security knowledge in the form of ontology facilitates anomaly detection, threat intelligence, reasoning and relevance attribution of attacks, and many more. This necessitates dynamic and automated enrichment of information security ontologies. However, existing ontology enrichment algorithms based on natural language processing and ML models have issues with contextual extraction of concepts in words, phrases and sentences. This motivates the need for sequential Deep Learning architectures that traverse through dependency paths in text and extract embedded security related concepts and instances from learned path representations. In the proposed approach, Bidirectional LSTMs trained on a large DBpedia dataset and Wikipedia corpus of 2.8 GB along with Universal Sentence Encoder is deployed to enrich ISO 27001 based information security ontology. The model trained and tested on high performance computing (HPC) environment to handle Wiki text dimensionality yielded a test accuracy of over 80% when tested with knocked out concepts from ontology and web page instances to validate the robustness." @default.
- W4220844524 created "2022-04-03" @default.
- W4220844524 creator A5036505064 @default.
- W4220844524 creator A5073712726 @default.
- W4220844524 creator A5073965959 @default.
- W4220844524 date "2022-03-17" @default.
- W4220844524 modified "2023-09-27" @default.
- W4220844524 title "OntoEnricher" @default.
- W4220844524 doi "https://doi.org/10.1201/9781003155799-9" @default.
- W4220844524 hasPublicationYear "2022" @default.
- W4220844524 type Work @default.
- W4220844524 citedByCount "1" @default.
- W4220844524 countsByYear W42208445242022 @default.
- W4220844524 crossrefType "book-chapter" @default.
- W4220844524 hasAuthorship W4220844524A5036505064 @default.
- W4220844524 hasAuthorship W4220844524A5073712726 @default.
- W4220844524 hasAuthorship W4220844524A5073965959 @default.
- W4220844524 hasConcept C41008148 @default.
- W4220844524 hasConceptScore W4220844524C41008148 @default.
- W4220844524 hasLocation W42208445241 @default.
- W4220844524 hasOpenAccess W4220844524 @default.
- W4220844524 hasPrimaryLocation W42208445241 @default.
- W4220844524 hasRelatedWork W1140107 @default.
- W4220844524 hasRelatedWork W140362 @default.
- W4220844524 hasRelatedWork W1453065 @default.
- W4220844524 hasRelatedWork W1563810 @default.
- W4220844524 hasRelatedWork W2060686 @default.
- W4220844524 hasRelatedWork W3207983 @default.
- W4220844524 hasRelatedWork W4155041 @default.
- W4220844524 hasRelatedWork W4320557 @default.
- W4220844524 hasRelatedWork W4867410 @default.
- W4220844524 hasRelatedWork W505434 @default.
- W4220844524 isParatext "false" @default.
- W4220844524 isRetracted "false" @default.
- W4220844524 workType "book-chapter" @default.