Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220844678> ?p ?o ?g. }
- W4220844678 abstract "Abstract This main intention of this paper is to adopt a new disease detection model for plant leaves. The proposed model involves several steps such as pre‐processing, leaf segmentation, abnormality segmentation, feature extraction and detection. Image scaling and contrast enhancement are performed during the pre‐processing phase. Once the pre‐processing is done, the segmentation phase starts with leaf segmentation by binary thresholding method and abnormality segmentation by K‐means clustering. Further, the local binary pattern and grey‐level co‐occurrence matrix features are extracted and a dimensionality reduced technique called principle component analysis is determined. As the main novelty, the weighted feature extraction is performed, in which the weight functions are optimized by the self‐adaptive deer hunting optimization (SA‐DHOA). Another contribution of this paper is to implement a hybrid classifier for disease detection. Here, the extracted weighted features are subjected to a support vector machine, and the abnormality segmented image is subjected to convolutional neural network (CNN), which is a deep learning algorithm that can learn the features automatically. Here, the same SA‐DHOA is used to improve the performance of CNN, which is termed as SA‐DHOA‐SCNN. Finally, the performance analysis confirms the maximum success rate of the proposed model over other conventional methods." @default.
- W4220844678 created "2022-04-03" @default.
- W4220844678 creator A5040380385 @default.
- W4220844678 creator A5050679667 @default.
- W4220844678 date "2022-03-09" @default.
- W4220844678 modified "2023-10-16" @default.
- W4220844678 title "Self‐adaptive‐deer hunting optimization‐based optimal weighted features and hybrid classifier for automated disease detection in plant leaves" @default.
- W4220844678 cites W2005543329 @default.
- W4220844678 cites W2072343128 @default.
- W4220844678 cites W2077653178 @default.
- W4220844678 cites W2131064753 @default.
- W4220844678 cites W2213241010 @default.
- W4220844678 cites W2277854822 @default.
- W4220844678 cites W2290883490 @default.
- W4220844678 cites W2295038166 @default.
- W4220844678 cites W2417927506 @default.
- W4220844678 cites W2490548105 @default.
- W4220844678 cites W2548258044 @default.
- W4220844678 cites W2585286277 @default.
- W4220844678 cites W2591769921 @default.
- W4220844678 cites W2606436201 @default.
- W4220844678 cites W2622826443 @default.
- W4220844678 cites W2656195006 @default.
- W4220844678 cites W2736811192 @default.
- W4220844678 cites W2754507318 @default.
- W4220844678 cites W2786538427 @default.
- W4220844678 cites W2789255992 @default.
- W4220844678 cites W2791019495 @default.
- W4220844678 cites W2791347599 @default.
- W4220844678 cites W2792362452 @default.
- W4220844678 cites W2799848215 @default.
- W4220844678 cites W2808709127 @default.
- W4220844678 cites W2886590014 @default.
- W4220844678 cites W2901380936 @default.
- W4220844678 cites W2905712933 @default.
- W4220844678 cites W2916534468 @default.
- W4220844678 cites W2927613875 @default.
- W4220844678 cites W2944599236 @default.
- W4220844678 cites W2985886590 @default.
- W4220844678 cites W2991306121 @default.
- W4220844678 cites W3013224184 @default.
- W4220844678 cites W3016625845 @default.
- W4220844678 cites W3037587672 @default.
- W4220844678 cites W3100411971 @default.
- W4220844678 cites W3135361473 @default.
- W4220844678 cites W3135999592 @default.
- W4220844678 cites W3166424296 @default.
- W4220844678 cites W3167324598 @default.
- W4220844678 doi "https://doi.org/10.1111/exsy.12982" @default.
- W4220844678 hasPublicationYear "2022" @default.
- W4220844678 type Work @default.
- W4220844678 citedByCount "1" @default.
- W4220844678 countsByYear W42208446782023 @default.
- W4220844678 crossrefType "journal-article" @default.
- W4220844678 hasAuthorship W4220844678A5040380385 @default.
- W4220844678 hasAuthorship W4220844678A5050679667 @default.
- W4220844678 hasConcept C115961682 @default.
- W4220844678 hasConcept C12267149 @default.
- W4220844678 hasConcept C124504099 @default.
- W4220844678 hasConcept C153180895 @default.
- W4220844678 hasConcept C154945302 @default.
- W4220844678 hasConcept C15744967 @default.
- W4220844678 hasConcept C191178318 @default.
- W4220844678 hasConcept C41008148 @default.
- W4220844678 hasConcept C50965678 @default.
- W4220844678 hasConcept C52622490 @default.
- W4220844678 hasConcept C73555534 @default.
- W4220844678 hasConcept C77805123 @default.
- W4220844678 hasConcept C81363708 @default.
- W4220844678 hasConcept C89600930 @default.
- W4220844678 hasConcept C95623464 @default.
- W4220844678 hasConceptScore W4220844678C115961682 @default.
- W4220844678 hasConceptScore W4220844678C12267149 @default.
- W4220844678 hasConceptScore W4220844678C124504099 @default.
- W4220844678 hasConceptScore W4220844678C153180895 @default.
- W4220844678 hasConceptScore W4220844678C154945302 @default.
- W4220844678 hasConceptScore W4220844678C15744967 @default.
- W4220844678 hasConceptScore W4220844678C191178318 @default.
- W4220844678 hasConceptScore W4220844678C41008148 @default.
- W4220844678 hasConceptScore W4220844678C50965678 @default.
- W4220844678 hasConceptScore W4220844678C52622490 @default.
- W4220844678 hasConceptScore W4220844678C73555534 @default.
- W4220844678 hasConceptScore W4220844678C77805123 @default.
- W4220844678 hasConceptScore W4220844678C81363708 @default.
- W4220844678 hasConceptScore W4220844678C89600930 @default.
- W4220844678 hasConceptScore W4220844678C95623464 @default.
- W4220844678 hasIssue "7" @default.
- W4220844678 hasLocation W42208446781 @default.
- W4220844678 hasOpenAccess W4220844678 @default.
- W4220844678 hasPrimaryLocation W42208446781 @default.
- W4220844678 hasRelatedWork W124243839 @default.
- W4220844678 hasRelatedWork W2009028679 @default.
- W4220844678 hasRelatedWork W2020103936 @default.
- W4220844678 hasRelatedWork W2115791626 @default.
- W4220844678 hasRelatedWork W2336974148 @default.
- W4220844678 hasRelatedWork W2347731544 @default.
- W4220844678 hasRelatedWork W2411367154 @default.
- W4220844678 hasRelatedWork W2996933976 @default.
- W4220844678 hasRelatedWork W3208266890 @default.
- W4220844678 hasRelatedWork W2345184372 @default.