Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220850519> ?p ?o ?g. }
- W4220850519 endingPage "13" @default.
- W4220850519 startingPage "1" @default.
- W4220850519 abstract "The hyperspectral images (HSIs) classification technique has received widespread attention in the field of remote sensing. However, how to achieve satisfactory classification performance in the presence of a large amount of noise is still a problem worthy of consideration. In this article, a local correntropy matrix (LCEM)-based spatial–spectral feature representation method is proposed for HSI classification. Motivated by the successful application of information-theoretic learning (ITL), we propose to adopt correntropy matrix to represent the spatial–spectral features of HSI. Specifically, the dimension reduction is first performed on the original hyperspectral data. Then, for each pixel, we select its local neighbors within a sliding window using cosine distance for the construction of the LCEM. In this way, each pixel can be characterized as an LCEM. Finally, all the correntropy matrices are fed into a support vector machine (SVM) for final classification. In addition, we also propose a novel way to determine the size of the local window based on standard deviation. Because the LCEM as the feature descriptor can characterize discriminative spatial–spectral features, the proposed method has shown great interclass separability and intraclass compactness. Compared with other advanced approaches, the proposed LCEM method has achieved competitive performance in both evaluation indexes and visual effects, especially when the training size is very small." @default.
- W4220850519 created "2022-04-03" @default.
- W4220850519 creator A5009595085 @default.
- W4220850519 creator A5017790584 @default.
- W4220850519 creator A5023274785 @default.
- W4220850519 creator A5026977092 @default.
- W4220850519 creator A5036030486 @default.
- W4220850519 creator A5068188193 @default.
- W4220850519 date "2022-01-01" @default.
- W4220850519 modified "2023-10-18" @default.
- W4220850519 title "Local Correntropy Matrix Representation for Hyperspectral Image Classification" @default.
- W4220850519 cites W1939429412 @default.
- W4220850519 cites W1986964250 @default.
- W4220850519 cites W2001298023 @default.
- W4220850519 cites W2006175358 @default.
- W4220850519 cites W2009539575 @default.
- W4220850519 cites W2041100636 @default.
- W4220850519 cites W2100495423 @default.
- W4220850519 cites W2101711129 @default.
- W4220850519 cites W2114819256 @default.
- W4220850519 cites W2135160607 @default.
- W4220850519 cites W2136251662 @default.
- W4220850519 cites W2136625467 @default.
- W4220850519 cites W2144151128 @default.
- W4220850519 cites W2152057649 @default.
- W4220850519 cites W2158400785 @default.
- W4220850519 cites W2166923144 @default.
- W4220850519 cites W2417947228 @default.
- W4220850519 cites W2428361224 @default.
- W4220850519 cites W2500751094 @default.
- W4220850519 cites W2589232018 @default.
- W4220850519 cites W2603422184 @default.
- W4220850519 cites W2753248899 @default.
- W4220850519 cites W2767805377 @default.
- W4220850519 cites W2782522152 @default.
- W4220850519 cites W2793645503 @default.
- W4220850519 cites W2804458818 @default.
- W4220850519 cites W2884367402 @default.
- W4220850519 cites W2887785636 @default.
- W4220850519 cites W2890022946 @default.
- W4220850519 cites W2910979321 @default.
- W4220850519 cites W2914331134 @default.
- W4220850519 cites W2939526493 @default.
- W4220850519 cites W2947906103 @default.
- W4220850519 cites W2952956606 @default.
- W4220850519 cites W2958108982 @default.
- W4220850519 cites W2962702700 @default.
- W4220850519 cites W2976477742 @default.
- W4220850519 cites W2981394989 @default.
- W4220850519 cites W2988698463 @default.
- W4220850519 cites W2991616716 @default.
- W4220850519 cites W3005379812 @default.
- W4220850519 cites W3011424859 @default.
- W4220850519 cites W3020943070 @default.
- W4220850519 cites W3023351371 @default.
- W4220850519 cites W3031696400 @default.
- W4220850519 cites W3047385447 @default.
- W4220850519 cites W3100011500 @default.
- W4220850519 cites W3100364246 @default.
- W4220850519 cites W3100714546 @default.
- W4220850519 cites W3103615857 @default.
- W4220850519 cites W3107591966 @default.
- W4220850519 cites W3121188342 @default.
- W4220850519 cites W3125860323 @default.
- W4220850519 cites W3130905106 @default.
- W4220850519 cites W3132115664 @default.
- W4220850519 cites W3138725786 @default.
- W4220850519 cites W3164189249 @default.
- W4220850519 cites W3171849407 @default.
- W4220850519 cites W3189482654 @default.
- W4220850519 cites W3198631380 @default.
- W4220850519 doi "https://doi.org/10.1109/tgrs.2022.3162100" @default.
- W4220850519 hasPublicationYear "2022" @default.
- W4220850519 type Work @default.
- W4220850519 citedByCount "5" @default.
- W4220850519 countsByYear W42208505192022 @default.
- W4220850519 countsByYear W42208505192023 @default.
- W4220850519 crossrefType "journal-article" @default.
- W4220850519 hasAuthorship W4220850519A5009595085 @default.
- W4220850519 hasAuthorship W4220850519A5017790584 @default.
- W4220850519 hasAuthorship W4220850519A5023274785 @default.
- W4220850519 hasAuthorship W4220850519A5026977092 @default.
- W4220850519 hasAuthorship W4220850519A5036030486 @default.
- W4220850519 hasAuthorship W4220850519A5068188193 @default.
- W4220850519 hasConcept C115961682 @default.
- W4220850519 hasConcept C12267149 @default.
- W4220850519 hasConcept C138885662 @default.
- W4220850519 hasConcept C153180895 @default.
- W4220850519 hasConcept C154945302 @default.
- W4220850519 hasConcept C159078339 @default.
- W4220850519 hasConcept C160633673 @default.
- W4220850519 hasConcept C2776401178 @default.
- W4220850519 hasConcept C31972630 @default.
- W4220850519 hasConcept C41008148 @default.
- W4220850519 hasConcept C41895202 @default.
- W4220850519 hasConcept C70518039 @default.
- W4220850519 hasConcept C75294576 @default.
- W4220850519 hasConcept C83665646 @default.