Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220851875> ?p ?o ?g. }
- W4220851875 endingPage "154701" @default.
- W4220851875 startingPage "154701" @default.
- W4220851875 abstract "The monthly high-resolution terrestrial water storage anomalies (TWSA) during the 11-months of gap between GRACE (Gravity Recovery And Climate Experiment) and its successor GRACE-FO (-Follow On) missions are missing. The continuity of the GRACE-like TWSA series with commensurate accuracy is of great importance for the improvement of hydrologic models both at global and regional scales. While previous efforts to bridge this gap, though without achieving GRACE-like spatial resolutions and/or accuracy have been performed, high-quality TWSA simulations at global scale are still lacking. Here, we use a suite of deep learning (DL) architectures, convolutional neural networks (CNN), deep convolutional autoencoders (DCAE), and Bayesian convolutional neural networks (BCNN), with training datasets including GRACE/-FO mascon and Swarm gravimetry, ECMWF Reanalysis-5 data, normalized time tag information to reconstruct global land TWSA maps, at a much higher resolution (100 km full wavelength) than that of GRACE/-FO, and effectively bridge the 11-month data gap globally. Contrary to previous studies, we applied no prior de-trending or de-seasoning to avoid biasing/aliasing the simulations induced by interannual or longer climate signals and extreme weather episodes. We show the contribution of Swarm and time inputs which significantly improved the TWSA simulations in particular for correct prediction of the trend component. Our results also show that external validation with independent data when filling large data gaps within spatio-temporal time series of geophysical signals is mandatory to maintain the robustness of the simulation results. The results and comparisons with previous studies and the adopted DL methods demonstrate the superior performance of DCAE. Validations of our DCAE-based TWSA simulations with independent datasets, including in situ groundwater level, Interferometric Synthetic Aperture Radar measured land subsidence rate (e.g. Central Valley), occurrence/timing of severe flash flood (e.g. South Asian Floods) and drought (e.g. Northern Great Plain, North America) events occurred within the gap, reveal excellent agreements." @default.
- W4220851875 created "2022-04-03" @default.
- W4220851875 creator A5024714903 @default.
- W4220851875 creator A5028315185 @default.
- W4220851875 creator A5033442102 @default.
- W4220851875 creator A5035374815 @default.
- W4220851875 creator A5037804613 @default.
- W4220851875 creator A5048295200 @default.
- W4220851875 creator A5076397942 @default.
- W4220851875 creator A5078674958 @default.
- W4220851875 creator A5083545605 @default.
- W4220851875 date "2022-07-01" @default.
- W4220851875 modified "2023-10-16" @default.
- W4220851875 title "Bridging the gap between GRACE and GRACE-FO missions with deep learning aided water storage simulations" @default.
- W4220851875 cites W1544223462 @default.
- W4220851875 cites W1588827410 @default.
- W4220851875 cites W1663873027 @default.
- W4220851875 cites W1845083140 @default.
- W4220851875 cites W1986805835 @default.
- W4220851875 cites W2033904036 @default.
- W4220851875 cites W2055664358 @default.
- W4220851875 cites W2060038468 @default.
- W4220851875 cites W2119132330 @default.
- W4220851875 cites W2122489171 @default.
- W4220851875 cites W2141504882 @default.
- W4220851875 cites W2177016926 @default.
- W4220851875 cites W2199758187 @default.
- W4220851875 cites W2333480653 @default.
- W4220851875 cites W2508457857 @default.
- W4220851875 cites W2523841373 @default.
- W4220851875 cites W2770809312 @default.
- W4220851875 cites W2784733489 @default.
- W4220851875 cites W2785029907 @default.
- W4220851875 cites W2788859954 @default.
- W4220851875 cites W2803015887 @default.
- W4220851875 cites W2883273070 @default.
- W4220851875 cites W2900567575 @default.
- W4220851875 cites W2908893700 @default.
- W4220851875 cites W2914267938 @default.
- W4220851875 cites W2914401989 @default.
- W4220851875 cites W2916366897 @default.
- W4220851875 cites W2942403577 @default.
- W4220851875 cites W2945993308 @default.
- W4220851875 cites W2979409277 @default.
- W4220851875 cites W2982054186 @default.
- W4220851875 cites W3003196087 @default.
- W4220851875 cites W3009488696 @default.
- W4220851875 cites W3011282527 @default.
- W4220851875 cites W3012144844 @default.
- W4220851875 cites W3027061344 @default.
- W4220851875 cites W3034484405 @default.
- W4220851875 cites W3037953524 @default.
- W4220851875 cites W3093480698 @default.
- W4220851875 cites W3103964896 @default.
- W4220851875 cites W3109706691 @default.
- W4220851875 cites W3119439829 @default.
- W4220851875 cites W3120062758 @default.
- W4220851875 cites W3161845486 @default.
- W4220851875 cites W3166087350 @default.
- W4220851875 cites W3215175305 @default.
- W4220851875 cites W4230953156 @default.
- W4220851875 doi "https://doi.org/10.1016/j.scitotenv.2022.154701" @default.
- W4220851875 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35337878" @default.
- W4220851875 hasPublicationYear "2022" @default.
- W4220851875 type Work @default.
- W4220851875 citedByCount "7" @default.
- W4220851875 countsByYear W42208518752022 @default.
- W4220851875 countsByYear W42208518752023 @default.
- W4220851875 crossrefType "journal-article" @default.
- W4220851875 hasAuthorship W4220851875A5024714903 @default.
- W4220851875 hasAuthorship W4220851875A5028315185 @default.
- W4220851875 hasAuthorship W4220851875A5033442102 @default.
- W4220851875 hasAuthorship W4220851875A5035374815 @default.
- W4220851875 hasAuthorship W4220851875A5037804613 @default.
- W4220851875 hasAuthorship W4220851875A5048295200 @default.
- W4220851875 hasAuthorship W4220851875A5076397942 @default.
- W4220851875 hasAuthorship W4220851875A5078674958 @default.
- W4220851875 hasAuthorship W4220851875A5083545605 @default.
- W4220851875 hasBestOaLocation W42208518751 @default.
- W4220851875 hasConcept C108583219 @default.
- W4220851875 hasConcept C119857082 @default.
- W4220851875 hasConcept C124101348 @default.
- W4220851875 hasConcept C151406439 @default.
- W4220851875 hasConcept C154945302 @default.
- W4220851875 hasConcept C41008148 @default.
- W4220851875 hasConcept C81363708 @default.
- W4220851875 hasConceptScore W4220851875C108583219 @default.
- W4220851875 hasConceptScore W4220851875C119857082 @default.
- W4220851875 hasConceptScore W4220851875C124101348 @default.
- W4220851875 hasConceptScore W4220851875C151406439 @default.
- W4220851875 hasConceptScore W4220851875C154945302 @default.
- W4220851875 hasConceptScore W4220851875C41008148 @default.
- W4220851875 hasConceptScore W4220851875C81363708 @default.
- W4220851875 hasLocation W42208518751 @default.
- W4220851875 hasLocation W42208518752 @default.
- W4220851875 hasOpenAccess W4220851875 @default.
- W4220851875 hasPrimaryLocation W42208518751 @default.
- W4220851875 hasRelatedWork W2731899572 @default.