Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220851927> ?p ?o ?g. }
- W4220851927 endingPage "823" @default.
- W4220851927 startingPage "823" @default.
- W4220851927 abstract "Grain processing products constitute an essential component of the human diet and are among the main sources of heavy metal intake. Therefore, a systematic assessment of risk factors and early-warning systems are vital to control heavy metal hazards in grain processing products. In this study, we established a risk assessment model to systematically analyze heavy metal hazards and combined the model with the K-means++ algorithm to perform risk level classification. We then employed deep learning models to conduct a multi-step prediction of risk levels, providing an early warning of food safety risks. By introducing a voting-ensemble technique, the accuracy of the prediction model was improved. The results indicated that the proposed model was superior to other models, exhibiting the overall accuracy of 90.47% in the 7-day prediction and thus satisfying the basic requirement of the food supervision department. This study provides a novel early-warning model for the systematic assessment of the risk level and further allows the development of targeted regulatory strategies to improve supervision efficiency." @default.
- W4220851927 created "2022-04-03" @default.
- W4220851927 creator A5026287089 @default.
- W4220851927 creator A5036819573 @default.
- W4220851927 creator A5052267876 @default.
- W4220851927 creator A5075867807 @default.
- W4220851927 creator A5076884755 @default.
- W4220851927 creator A5083681358 @default.
- W4220851927 creator A5086915875 @default.
- W4220851927 date "2022-03-13" @default.
- W4220851927 modified "2023-09-26" @default.
- W4220851927 title "A Voting-Based Ensemble Deep Learning Method Focused on Multi-Step Prediction of Food Safety Risk Levels: Applications in Hazard Analysis of Heavy Metals in Grain Processing Products" @default.
- W4220851927 cites W2005328899 @default.
- W4220851927 cites W2027843692 @default.
- W4220851927 cites W2035057187 @default.
- W4220851927 cites W2092606478 @default.
- W4220851927 cites W2288952409 @default.
- W4220851927 cites W2410684641 @default.
- W4220851927 cites W2416739003 @default.
- W4220851927 cites W2591091887 @default.
- W4220851927 cites W2626065231 @default.
- W4220851927 cites W2626844099 @default.
- W4220851927 cites W2726382703 @default.
- W4220851927 cites W2761146210 @default.
- W4220851927 cites W2766508115 @default.
- W4220851927 cites W2769921776 @default.
- W4220851927 cites W2796342516 @default.
- W4220851927 cites W2800755978 @default.
- W4220851927 cites W2804308155 @default.
- W4220851927 cites W2808187500 @default.
- W4220851927 cites W2808870768 @default.
- W4220851927 cites W2893653098 @default.
- W4220851927 cites W2904330251 @default.
- W4220851927 cites W2904651155 @default.
- W4220851927 cites W2911429292 @default.
- W4220851927 cites W2914351560 @default.
- W4220851927 cites W2915296310 @default.
- W4220851927 cites W2943691097 @default.
- W4220851927 cites W2947496277 @default.
- W4220851927 cites W2954181371 @default.
- W4220851927 cites W2954724624 @default.
- W4220851927 cites W2966248700 @default.
- W4220851927 cites W2967159015 @default.
- W4220851927 cites W2980434023 @default.
- W4220851927 cites W2981934777 @default.
- W4220851927 cites W2990273635 @default.
- W4220851927 cites W2996823955 @default.
- W4220851927 cites W3004378309 @default.
- W4220851927 cites W3014222746 @default.
- W4220851927 cites W3044424344 @default.
- W4220851927 cites W3126815361 @default.
- W4220851927 cites W3130560625 @default.
- W4220851927 cites W3159416998 @default.
- W4220851927 cites W3162426603 @default.
- W4220851927 cites W3163526943 @default.
- W4220851927 cites W3174871970 @default.
- W4220851927 cites W3187844192 @default.
- W4220851927 cites W3194064021 @default.
- W4220851927 cites W4206623842 @default.
- W4220851927 cites W4248454370 @default.
- W4220851927 doi "https://doi.org/10.3390/foods11060823" @default.
- W4220851927 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35327246" @default.
- W4220851927 hasPublicationYear "2022" @default.
- W4220851927 type Work @default.
- W4220851927 citedByCount "9" @default.
- W4220851927 countsByYear W42208519272022 @default.
- W4220851927 countsByYear W42208519272023 @default.
- W4220851927 crossrefType "journal-article" @default.
- W4220851927 hasAuthorship W4220851927A5026287089 @default.
- W4220851927 hasAuthorship W4220851927A5036819573 @default.
- W4220851927 hasAuthorship W4220851927A5052267876 @default.
- W4220851927 hasAuthorship W4220851927A5075867807 @default.
- W4220851927 hasAuthorship W4220851927A5076884755 @default.
- W4220851927 hasAuthorship W4220851927A5083681358 @default.
- W4220851927 hasAuthorship W4220851927A5086915875 @default.
- W4220851927 hasBestOaLocation W42208519271 @default.
- W4220851927 hasConcept C112930515 @default.
- W4220851927 hasConcept C119857082 @default.
- W4220851927 hasConcept C121332964 @default.
- W4220851927 hasConcept C12174686 @default.
- W4220851927 hasConcept C124101348 @default.
- W4220851927 hasConcept C127413603 @default.
- W4220851927 hasConcept C142724271 @default.
- W4220851927 hasConcept C144133560 @default.
- W4220851927 hasConcept C168167062 @default.
- W4220851927 hasConcept C17744445 @default.
- W4220851927 hasConcept C178790620 @default.
- W4220851927 hasConcept C185592680 @default.
- W4220851927 hasConcept C199539241 @default.
- W4220851927 hasConcept C200601418 @default.
- W4220851927 hasConcept C29825287 @default.
- W4220851927 hasConcept C38652104 @default.
- W4220851927 hasConcept C41008148 @default.
- W4220851927 hasConcept C45942800 @default.
- W4220851927 hasConcept C49261128 @default.
- W4220851927 hasConcept C516717267 @default.
- W4220851927 hasConcept C520049643 @default.
- W4220851927 hasConcept C71924100 @default.