Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220852173> ?p ?o ?g. }
- W4220852173 endingPage "759" @default.
- W4220852173 startingPage "759" @default.
- W4220852173 abstract "Farm animals, numbering over 70 billion worldwide, are increasingly managed in large-scale, intensive farms. With both public awareness and scientific evidence growing that farm animals experience suffering, as well as affective states such as fear, frustration and distress, there is an urgent need to develop efficient and accurate methods for monitoring their welfare. At present, there are not scientifically validated 'benchmarks' for quantifying transient emotional (affective) states in farm animals, and no established measures of good welfare, only indicators of poor welfare, such as injury, pain and fear. Conventional approaches to monitoring livestock welfare are time-consuming, interrupt farming processes and involve subjective judgments. Biometric sensor data enabled by artificial intelligence is an emerging smart solution to unobtrusively monitoring livestock, but its potential for quantifying affective states and ground-breaking solutions in their application are yet to be realized. This review provides innovative methods for collecting big data on farm animal emotions, which can be used to train artificial intelligence models to classify, quantify and predict affective states in individual pigs and cows. Extending this to the group level, social network analysis can be applied to model emotional dynamics and contagion among animals. Finally, 'digital twins' of animals capable of simulating and predicting their affective states and behaviour in real time are a near-term possibility." @default.
- W4220852173 created "2022-04-03" @default.
- W4220852173 creator A5018954036 @default.
- W4220852173 date "2022-03-17" @default.
- W4220852173 modified "2023-10-06" @default.
- W4220852173 title "Affective State Recognition in Livestock—Artificial Intelligence Approaches" @default.
- W4220852173 cites W1462530521 @default.
- W4220852173 cites W1997057019 @default.
- W4220852173 cites W1999384834 @default.
- W4220852173 cites W2020093415 @default.
- W4220852173 cites W2127099931 @default.
- W4220852173 cites W2165141023 @default.
- W4220852173 cites W2290594242 @default.
- W4220852173 cites W2411440652 @default.
- W4220852173 cites W2467355409 @default.
- W4220852173 cites W2526437469 @default.
- W4220852173 cites W2542897750 @default.
- W4220852173 cites W2565944610 @default.
- W4220852173 cites W2581974582 @default.
- W4220852173 cites W2585702536 @default.
- W4220852173 cites W2586609531 @default.
- W4220852173 cites W2605763880 @default.
- W4220852173 cites W2608175373 @default.
- W4220852173 cites W2731836491 @default.
- W4220852173 cites W2736524046 @default.
- W4220852173 cites W2739958663 @default.
- W4220852173 cites W2757888873 @default.
- W4220852173 cites W2759717105 @default.
- W4220852173 cites W2767510675 @default.
- W4220852173 cites W2774381857 @default.
- W4220852173 cites W2792151248 @default.
- W4220852173 cites W2792656835 @default.
- W4220852173 cites W2793299429 @default.
- W4220852173 cites W2798536775 @default.
- W4220852173 cites W2802928672 @default.
- W4220852173 cites W2804675769 @default.
- W4220852173 cites W2806543185 @default.
- W4220852173 cites W2821283928 @default.
- W4220852173 cites W2883303790 @default.
- W4220852173 cites W2884638140 @default.
- W4220852173 cites W2885345481 @default.
- W4220852173 cites W2885770726 @default.
- W4220852173 cites W2887082145 @default.
- W4220852173 cites W2888488575 @default.
- W4220852173 cites W2891184444 @default.
- W4220852173 cites W2891449500 @default.
- W4220852173 cites W2893900923 @default.
- W4220852173 cites W2895702882 @default.
- W4220852173 cites W2895747099 @default.
- W4220852173 cites W2896159153 @default.
- W4220852173 cites W2897911228 @default.
- W4220852173 cites W2900014987 @default.
- W4220852173 cites W2900945483 @default.
- W4220852173 cites W2901865783 @default.
- W4220852173 cites W2902768594 @default.
- W4220852173 cites W2903020943 @default.
- W4220852173 cites W2904246206 @default.
- W4220852173 cites W2905502390 @default.
- W4220852173 cites W2905628412 @default.
- W4220852173 cites W2908314590 @default.
- W4220852173 cites W2910011937 @default.
- W4220852173 cites W2912483755 @default.
- W4220852173 cites W2912817214 @default.
- W4220852173 cites W2913453026 @default.
- W4220852173 cites W2915671565 @default.
- W4220852173 cites W2918087949 @default.
- W4220852173 cites W2920752436 @default.
- W4220852173 cites W2938429152 @default.
- W4220852173 cites W2938914336 @default.
- W4220852173 cites W2944195663 @default.
- W4220852173 cites W2950876814 @default.
- W4220852173 cites W2958609630 @default.
- W4220852173 cites W2965596708 @default.
- W4220852173 cites W2966101900 @default.
- W4220852173 cites W2967844572 @default.
- W4220852173 cites W2970466264 @default.
- W4220852173 cites W2971056551 @default.
- W4220852173 cites W2977012283 @default.
- W4220852173 cites W2984413730 @default.
- W4220852173 cites W2984600346 @default.
- W4220852173 cites W2991711180 @default.
- W4220852173 cites W2996350645 @default.
- W4220852173 cites W2997797021 @default.
- W4220852173 cites W2998878013 @default.
- W4220852173 cites W3000702499 @default.
- W4220852173 cites W3001860515 @default.
- W4220852173 cites W3002816385 @default.
- W4220852173 cites W3003712738 @default.
- W4220852173 cites W3003864713 @default.
- W4220852173 cites W3003908700 @default.
- W4220852173 cites W3005074312 @default.
- W4220852173 cites W3006930523 @default.
- W4220852173 cites W3008941625 @default.
- W4220852173 cites W3009655591 @default.
- W4220852173 cites W3010095435 @default.
- W4220852173 cites W3016518138 @default.
- W4220852173 cites W3016803843 @default.
- W4220852173 cites W3024889651 @default.