Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220852273> ?p ?o ?g. }
- W4220852273 endingPage "127553" @default.
- W4220852273 startingPage "127553" @default.
- W4220852273 abstract "As an important part of urban greening, the canopy of street trees has ecological benefits, such as oxygen production, noise reduction, and dust reduction. The living vegetation volume (LVV) can reflect the spatial structure of the canopy intuitively and enables the estimation of the ecological service value of street trees. Terrestrial laser scanning (TLS) has shown excellent performance for providing three-dimensional data of individual trees with high precision, enabling the accurate quantification of the LVV. In this study, we divided the LVV into the total living vegetation volume (tLVV) and the effective living vegetation volume (eLVV); the latter does not include branches. The eLVV of 40 ginkgo trees separated in two roads in Nanjing was calculated from TLS data. A novel method named LAIM for accurate eLVV calculation based on point cloud data was proposed. The point cloud data of individual tree was segmented along the Z-axis and image processing methods were used. With this, eLVV of each tree was obtained. The results were compared with data obtained from a clustered point cloud generated using convex hulls. The Bland-Altman analysis was used to investigate the consistency of the two methods. Furthermore, we used correlation analysis and all-subsets regression to choose the variables, and the eLVV was fitted using six models. Finally, we evaluated O2 production, CO2 and SO2 absorption by the street trees based on eLVV, the ecological benefits of street trees were quantified. The results showed the following: (1) The number of layers and the dilation size of the point cloud were crucial parameters in the LAIM. (2) For ginkgo trees, the mean difference between the eLVV obtained from the LAIM and the convex hull method was − 0.53–0.19 m3, indicating that the results were highly consistent for the two methods. (3) The eLVV fitting performance was better for the exponential function model (R2 =0.8523, RMSE=0.6838 m3) and linear model (R2 =0.8361, RMSE=0.7224 m3). The tree height and crown width significantly affected the eLVV estimation. (4) The evaluation about ecological benefits of Zhaoyang Road was better than Cuizhu Road. The quantified ecological benefits were conducive to road ecological evaluation. This study quantified the eLVV of individual trees using TLS, highlighting the importance of live vegetation in urban greening. The results can provide technical support for estimating the ecological service value of urban street trees." @default.
- W4220852273 created "2022-04-03" @default.
- W4220852273 creator A5004345759 @default.
- W4220852273 creator A5009950031 @default.
- W4220852273 creator A5031077836 @default.
- W4220852273 creator A5055258781 @default.
- W4220852273 creator A5080221393 @default.
- W4220852273 date "2022-05-01" @default.
- W4220852273 modified "2023-10-10" @default.
- W4220852273 title "Feasibility study on the estimation of the living vegetation volume of individual street trees using terrestrial laser scanning" @default.
- W4220852273 cites W1964116066 @default.
- W4220852273 cites W1986104804 @default.
- W4220852273 cites W1989561113 @default.
- W4220852273 cites W1991776813 @default.
- W4220852273 cites W2031021616 @default.
- W4220852273 cites W2050669233 @default.
- W4220852273 cites W2059221395 @default.
- W4220852273 cites W2094419035 @default.
- W4220852273 cites W2136280819 @default.
- W4220852273 cites W2607734329 @default.
- W4220852273 cites W2609825692 @default.
- W4220852273 cites W2620632969 @default.
- W4220852273 cites W2705625299 @default.
- W4220852273 cites W2810434396 @default.
- W4220852273 cites W2810482441 @default.
- W4220852273 cites W2912051998 @default.
- W4220852273 cites W2918006222 @default.
- W4220852273 cites W2954080612 @default.
- W4220852273 cites W2970774509 @default.
- W4220852273 cites W2991512114 @default.
- W4220852273 cites W2996321354 @default.
- W4220852273 cites W3024796654 @default.
- W4220852273 cites W3029629412 @default.
- W4220852273 cites W3033935644 @default.
- W4220852273 cites W3035122126 @default.
- W4220852273 cites W3177016866 @default.
- W4220852273 doi "https://doi.org/10.1016/j.ufug.2022.127553" @default.
- W4220852273 hasPublicationYear "2022" @default.
- W4220852273 type Work @default.
- W4220852273 citedByCount "3" @default.
- W4220852273 countsByYear W42208522732022 @default.
- W4220852273 countsByYear W42208522732023 @default.
- W4220852273 crossrefType "journal-article" @default.
- W4220852273 hasAuthorship W4220852273A5004345759 @default.
- W4220852273 hasAuthorship W4220852273A5009950031 @default.
- W4220852273 hasAuthorship W4220852273A5031077836 @default.
- W4220852273 hasAuthorship W4220852273A5055258781 @default.
- W4220852273 hasAuthorship W4220852273A5080221393 @default.
- W4220852273 hasConcept C101000010 @default.
- W4220852273 hasConcept C105795698 @default.
- W4220852273 hasConcept C113174947 @default.
- W4220852273 hasConcept C120665830 @default.
- W4220852273 hasConcept C121332964 @default.
- W4220852273 hasConcept C131979681 @default.
- W4220852273 hasConcept C134306372 @default.
- W4220852273 hasConcept C141349535 @default.
- W4220852273 hasConcept C142724271 @default.
- W4220852273 hasConcept C18903297 @default.
- W4220852273 hasConcept C20556612 @default.
- W4220852273 hasConcept C205649164 @default.
- W4220852273 hasConcept C2776133958 @default.
- W4220852273 hasConcept C31972630 @default.
- W4220852273 hasConcept C33923547 @default.
- W4220852273 hasConcept C39432304 @default.
- W4220852273 hasConcept C41008148 @default.
- W4220852273 hasConcept C520434653 @default.
- W4220852273 hasConcept C62520636 @default.
- W4220852273 hasConcept C62649853 @default.
- W4220852273 hasConcept C71924100 @default.
- W4220852273 hasConcept C86803240 @default.
- W4220852273 hasConceptScore W4220852273C101000010 @default.
- W4220852273 hasConceptScore W4220852273C105795698 @default.
- W4220852273 hasConceptScore W4220852273C113174947 @default.
- W4220852273 hasConceptScore W4220852273C120665830 @default.
- W4220852273 hasConceptScore W4220852273C121332964 @default.
- W4220852273 hasConceptScore W4220852273C131979681 @default.
- W4220852273 hasConceptScore W4220852273C134306372 @default.
- W4220852273 hasConceptScore W4220852273C141349535 @default.
- W4220852273 hasConceptScore W4220852273C142724271 @default.
- W4220852273 hasConceptScore W4220852273C18903297 @default.
- W4220852273 hasConceptScore W4220852273C20556612 @default.
- W4220852273 hasConceptScore W4220852273C205649164 @default.
- W4220852273 hasConceptScore W4220852273C2776133958 @default.
- W4220852273 hasConceptScore W4220852273C31972630 @default.
- W4220852273 hasConceptScore W4220852273C33923547 @default.
- W4220852273 hasConceptScore W4220852273C39432304 @default.
- W4220852273 hasConceptScore W4220852273C41008148 @default.
- W4220852273 hasConceptScore W4220852273C520434653 @default.
- W4220852273 hasConceptScore W4220852273C62520636 @default.
- W4220852273 hasConceptScore W4220852273C62649853 @default.
- W4220852273 hasConceptScore W4220852273C71924100 @default.
- W4220852273 hasConceptScore W4220852273C86803240 @default.
- W4220852273 hasFunder F4320321001 @default.
- W4220852273 hasFunder F4320321543 @default.
- W4220852273 hasFunder F4320322769 @default.
- W4220852273 hasFunder F4320335777 @default.
- W4220852273 hasLocation W42208522731 @default.
- W4220852273 hasOpenAccess W4220852273 @default.