Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220852472> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4220852472 endingPage "53" @default.
- W4220852472 startingPage "43" @default.
- W4220852472 abstract "For the past few years, artificial neural networks (ANNs) have been one of the most common solutions relied upon while developing automated speech recognition (ASR) acoustic models. There are several variants of ANNs, such as deep neural networks (DNNs), recurrent neural networks (RNNs), and convolutional neural networks (CNNs). A CNN model is widely used as a method for improving image processing performance. In recent years, CNNs have also been utilized in ASR techniques, and this paper investigates the preliminary result of an end-to-end CNN-based ASR using NVIDIA NeMo on the Iban corpus, an under-resourced language. Studies have shown that CNNs have also managed to produce excellent word error (WER) rates for the acoustic model on ASR for speech data. Conversely, results and studies concerned with under-resourced languages remain unsatisfactory. Hence, by using NVIDIA NeMo, a new ASR engine developed by NVIDIA, the viability and the potential of this alternative approach are evaluated in this paper. Two experiments were conducted: the number of resources used in the works of our ASR’s training was manipulated, as was the internal parameter of the engine used, namely the epochs. The results of those experiments are then analyzed and compared with the results shown in existing papers." @default.
- W4220852472 created "2022-04-03" @default.
- W4220852472 creator A5008129683 @default.
- W4220852472 creator A5063116843 @default.
- W4220852472 creator A5068414348 @default.
- W4220852472 date "2022-03-31" @default.
- W4220852472 modified "2023-09-25" @default.
- W4220852472 title "Preliminary Evaluation of Convolutional Neural Network Acoustic Model for Iban Language Using NVIDIA NeMo" @default.
- W4220852472 cites W2168249605 @default.
- W4220852472 cites W2396466159 @default.
- W4220852472 cites W2803405196 @default.
- W4220852472 cites W2889124873 @default.
- W4220852472 cites W2889275521 @default.
- W4220852472 cites W2963175699 @default.
- W4220852472 cites W2971995676 @default.
- W4220852472 cites W2973215447 @default.
- W4220852472 cites W3009116905 @default.
- W4220852472 cites W3095173472 @default.
- W4220852472 cites W3127364826 @default.
- W4220852472 doi "https://doi.org/10.26636/jtit.2022.156121" @default.
- W4220852472 hasPublicationYear "2022" @default.
- W4220852472 type Work @default.
- W4220852472 citedByCount "0" @default.
- W4220852472 crossrefType "journal-article" @default.
- W4220852472 hasAuthorship W4220852472A5008129683 @default.
- W4220852472 hasAuthorship W4220852472A5063116843 @default.
- W4220852472 hasAuthorship W4220852472A5068414348 @default.
- W4220852472 hasBestOaLocation W42208524721 @default.
- W4220852472 hasConcept C137293760 @default.
- W4220852472 hasConcept C138885662 @default.
- W4220852472 hasConcept C147168706 @default.
- W4220852472 hasConcept C153180895 @default.
- W4220852472 hasConcept C154945302 @default.
- W4220852472 hasConcept C155635449 @default.
- W4220852472 hasConcept C28490314 @default.
- W4220852472 hasConcept C2984842247 @default.
- W4220852472 hasConcept C41008148 @default.
- W4220852472 hasConcept C41895202 @default.
- W4220852472 hasConcept C50644808 @default.
- W4220852472 hasConcept C61328038 @default.
- W4220852472 hasConcept C81363708 @default.
- W4220852472 hasConcept C90805587 @default.
- W4220852472 hasConceptScore W4220852472C137293760 @default.
- W4220852472 hasConceptScore W4220852472C138885662 @default.
- W4220852472 hasConceptScore W4220852472C147168706 @default.
- W4220852472 hasConceptScore W4220852472C153180895 @default.
- W4220852472 hasConceptScore W4220852472C154945302 @default.
- W4220852472 hasConceptScore W4220852472C155635449 @default.
- W4220852472 hasConceptScore W4220852472C28490314 @default.
- W4220852472 hasConceptScore W4220852472C2984842247 @default.
- W4220852472 hasConceptScore W4220852472C41008148 @default.
- W4220852472 hasConceptScore W4220852472C41895202 @default.
- W4220852472 hasConceptScore W4220852472C50644808 @default.
- W4220852472 hasConceptScore W4220852472C61328038 @default.
- W4220852472 hasConceptScore W4220852472C81363708 @default.
- W4220852472 hasConceptScore W4220852472C90805587 @default.
- W4220852472 hasIssue "2022" @default.
- W4220852472 hasLocation W42208524721 @default.
- W4220852472 hasLocation W42208524722 @default.
- W4220852472 hasOpenAccess W4220852472 @default.
- W4220852472 hasPrimaryLocation W42208524721 @default.
- W4220852472 hasRelatedWork W1499864241 @default.
- W4220852472 hasRelatedWork W2767651786 @default.
- W4220852472 hasRelatedWork W2782005958 @default.
- W4220852472 hasRelatedWork W2896411932 @default.
- W4220852472 hasRelatedWork W2912288872 @default.
- W4220852472 hasRelatedWork W2963414781 @default.
- W4220852472 hasRelatedWork W4205868073 @default.
- W4220852472 hasRelatedWork W4288754470 @default.
- W4220852472 hasRelatedWork W4360942793 @default.
- W4220852472 hasRelatedWork W564581980 @default.
- W4220852472 hasVolume "1" @default.
- W4220852472 isParatext "false" @default.
- W4220852472 isRetracted "false" @default.
- W4220852472 workType "article" @default.