Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220859843> ?p ?o ?g. }
- W4220859843 endingPage "2396" @default.
- W4220859843 startingPage "2396" @default.
- W4220859843 abstract "Piezoelectric ceramics have good electromechanical coupling characteristics and a high sensitivity to load. One typical engineering application of piezoelectric ceramic is its use as a signal source for Weigh-In-Motion (WIM) systems in road traffic monitoring. However, piezoelectric ceramics are also sensitive to temperature, which affects their measurement accuracy. In this study, a new piezoelectric ceramic WIM sensor was developed. The output signals of sensors under different loads and temperatures were obtained. The results were corrected using polynomial regression and a Genetic Algorithm Back Propagation (GA-BP) neural network algorithm, respectively. The results show that the GA-BP neural network algorithm had a better effect on sensor temperature compensation. Before and after GA-BP compensation, the maximum relative error decreased from about 30% to less than 4%. The sensitivity coefficient of the sensor reduced from 1.0192 × 10-2/°C to 1.896 × 10-4/°C. The results show that the GA-BP algorithm greatly reduced the influence of temperature on the piezoelectric ceramic sensor and improved its temperature stability and accuracy, which helped improve the efficiency of clean-energy harvesting and conversion." @default.
- W4220859843 created "2022-04-03" @default.
- W4220859843 creator A5003740227 @default.
- W4220859843 creator A5012558857 @default.
- W4220859843 creator A5057485967 @default.
- W4220859843 creator A5068072216 @default.
- W4220859843 creator A5069483505 @default.
- W4220859843 creator A5079525526 @default.
- W4220859843 creator A5091374776 @default.
- W4220859843 date "2022-03-20" @default.
- W4220859843 modified "2023-10-14" @default.
- W4220859843 title "Investigation of the Temperature Compensation of Piezoelectric Weigh-In-Motion Sensors Using a Machine Learning Approach" @default.
- W4220859843 cites W2041280685 @default.
- W4220859843 cites W2112209186 @default.
- W4220859843 cites W2153303997 @default.
- W4220859843 cites W2487217422 @default.
- W4220859843 cites W2489474068 @default.
- W4220859843 cites W2508577522 @default.
- W4220859843 cites W2556941535 @default.
- W4220859843 cites W2566941050 @default.
- W4220859843 cites W2626831381 @default.
- W4220859843 cites W2753172653 @default.
- W4220859843 cites W2772363402 @default.
- W4220859843 cites W2879134261 @default.
- W4220859843 cites W2903890128 @default.
- W4220859843 cites W2937554022 @default.
- W4220859843 cites W2944087107 @default.
- W4220859843 cites W2945264879 @default.
- W4220859843 cites W2964579654 @default.
- W4220859843 cites W2965096550 @default.
- W4220859843 cites W2973331914 @default.
- W4220859843 cites W2981571993 @default.
- W4220859843 cites W2991136818 @default.
- W4220859843 cites W3001694121 @default.
- W4220859843 cites W3030231285 @default.
- W4220859843 cites W3031596192 @default.
- W4220859843 cites W3033604694 @default.
- W4220859843 cites W3034284167 @default.
- W4220859843 cites W3039599451 @default.
- W4220859843 cites W3039839782 @default.
- W4220859843 cites W3047650208 @default.
- W4220859843 cites W3094474371 @default.
- W4220859843 cites W3114333203 @default.
- W4220859843 cites W3148199251 @default.
- W4220859843 cites W3152927755 @default.
- W4220859843 cites W3154054239 @default.
- W4220859843 cites W3194784873 @default.
- W4220859843 cites W4200527554 @default.
- W4220859843 doi "https://doi.org/10.3390/s22062396" @default.
- W4220859843 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35336567" @default.
- W4220859843 hasPublicationYear "2022" @default.
- W4220859843 type Work @default.
- W4220859843 citedByCount "3" @default.
- W4220859843 countsByYear W42208598432022 @default.
- W4220859843 countsByYear W42208598432023 @default.
- W4220859843 crossrefType "journal-article" @default.
- W4220859843 hasAuthorship W4220859843A5003740227 @default.
- W4220859843 hasAuthorship W4220859843A5012558857 @default.
- W4220859843 hasAuthorship W4220859843A5057485967 @default.
- W4220859843 hasAuthorship W4220859843A5068072216 @default.
- W4220859843 hasAuthorship W4220859843A5069483505 @default.
- W4220859843 hasAuthorship W4220859843A5079525526 @default.
- W4220859843 hasAuthorship W4220859843A5091374776 @default.
- W4220859843 hasBestOaLocation W42208598431 @default.
- W4220859843 hasConcept C100082104 @default.
- W4220859843 hasConcept C105795698 @default.
- W4220859843 hasConcept C11171543 @default.
- W4220859843 hasConcept C11413529 @default.
- W4220859843 hasConcept C119857082 @default.
- W4220859843 hasConcept C121332964 @default.
- W4220859843 hasConcept C122383733 @default.
- W4220859843 hasConcept C127413603 @default.
- W4220859843 hasConcept C131584629 @default.
- W4220859843 hasConcept C134132462 @default.
- W4220859843 hasConcept C154945302 @default.
- W4220859843 hasConcept C155032097 @default.
- W4220859843 hasConcept C15744967 @default.
- W4220859843 hasConcept C159985019 @default.
- W4220859843 hasConcept C173677008 @default.
- W4220859843 hasConcept C186370098 @default.
- W4220859843 hasConcept C192562407 @default.
- W4220859843 hasConcept C199360897 @default.
- W4220859843 hasConcept C21200559 @default.
- W4220859843 hasConcept C24326235 @default.
- W4220859843 hasConcept C24890656 @default.
- W4220859843 hasConcept C2775924081 @default.
- W4220859843 hasConcept C2779843651 @default.
- W4220859843 hasConcept C2780023022 @default.
- W4220859843 hasConcept C2780092901 @default.
- W4220859843 hasConcept C33923547 @default.
- W4220859843 hasConcept C41008148 @default.
- W4220859843 hasConcept C47446073 @default.
- W4220859843 hasConcept C50644808 @default.
- W4220859843 hasConcept C86194701 @default.
- W4220859843 hasConceptScore W4220859843C100082104 @default.
- W4220859843 hasConceptScore W4220859843C105795698 @default.
- W4220859843 hasConceptScore W4220859843C11171543 @default.
- W4220859843 hasConceptScore W4220859843C11413529 @default.