Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220865718> ?p ?o ?g. }
- W4220865718 endingPage "105385" @default.
- W4220865718 startingPage "105385" @default.
- W4220865718 abstract "The main purpose of the present paper is to introduce a reliable method, for the first time, in solving differential equations with partial derivatives. The significant idea behind this method is the modification of a well-known method. The main base functions used in the solution’s structures are Jacobi elliptic functions which are known functions and have many applications in practice. In order to achieve these results, the perturbed Schrödinger equation with Kerr law nonlinearity is considered. This nonlinear equation illustrates the propagation of optical solitons in nonlinear optical fibers. Thereupon, several analytical solutions corresponding to this model are obtained through employing an improved generalized exponential rational function method. Then we present a new version of it that is presented for the first time in the literature. Using these methods, several wave solutions related to the considered model are obtained. Moreover, several numerical simulations relevant to the resulting solutions are performed in the paper. As a notable features of the proposed method, the obtained solutions are characterized by the Jacobi elliptic functions. These solutions contain an index that for some specific choices is reduced to standard functions such as trigonometric and hyperbolic. The obtained results and solutions can be used for investigating the mechanism of several nonlinear phenomena laboratory and space plasmas. All necessary calculations are performed via symbolic packages of Wolfram Mathematica." @default.
- W4220865718 created "2022-04-03" @default.
- W4220865718 creator A5001340017 @default.
- W4220865718 creator A5007331444 @default.
- W4220865718 creator A5041270026 @default.
- W4220865718 creator A5061907002 @default.
- W4220865718 creator A5083701662 @default.
- W4220865718 creator A5089496116 @default.
- W4220865718 date "2022-04-01" @default.
- W4220865718 modified "2023-10-05" @default.
- W4220865718 title "Abundant solitary wave solutions to a perturbed Schrödinger equation with Kerr law nonlinearity via a novel approach" @default.
- W4220865718 cites W1965708978 @default.
- W4220865718 cites W2005948083 @default.
- W4220865718 cites W2037481461 @default.
- W4220865718 cites W2039681904 @default.
- W4220865718 cites W2039867344 @default.
- W4220865718 cites W2053087572 @default.
- W4220865718 cites W2108529507 @default.
- W4220865718 cites W2127128773 @default.
- W4220865718 cites W2172414120 @default.
- W4220865718 cites W2207662965 @default.
- W4220865718 cites W2220742920 @default.
- W4220865718 cites W2316340992 @default.
- W4220865718 cites W2320950607 @default.
- W4220865718 cites W2322009044 @default.
- W4220865718 cites W2414472952 @default.
- W4220865718 cites W2531592927 @default.
- W4220865718 cites W2562646991 @default.
- W4220865718 cites W2564194003 @default.
- W4220865718 cites W2592990480 @default.
- W4220865718 cites W2760655445 @default.
- W4220865718 cites W2792277290 @default.
- W4220865718 cites W2796990500 @default.
- W4220865718 cites W2884605149 @default.
- W4220865718 cites W2887404322 @default.
- W4220865718 cites W2887442605 @default.
- W4220865718 cites W2889578720 @default.
- W4220865718 cites W2896913575 @default.
- W4220865718 cites W2905515790 @default.
- W4220865718 cites W2910206257 @default.
- W4220865718 cites W2919736785 @default.
- W4220865718 cites W2923153527 @default.
- W4220865718 cites W2923666083 @default.
- W4220865718 cites W2948949658 @default.
- W4220865718 cites W2964117596 @default.
- W4220865718 cites W2968046733 @default.
- W4220865718 cites W2976988296 @default.
- W4220865718 cites W2980079197 @default.
- W4220865718 cites W2984862592 @default.
- W4220865718 cites W2990165896 @default.
- W4220865718 cites W2991044484 @default.
- W4220865718 cites W2992032327 @default.
- W4220865718 cites W2995873270 @default.
- W4220865718 cites W3004128881 @default.
- W4220865718 cites W3008809557 @default.
- W4220865718 cites W3012394332 @default.
- W4220865718 cites W3012532178 @default.
- W4220865718 cites W3027843755 @default.
- W4220865718 cites W3029922973 @default.
- W4220865718 cites W3035055142 @default.
- W4220865718 cites W3040194299 @default.
- W4220865718 cites W3042761298 @default.
- W4220865718 cites W3044787366 @default.
- W4220865718 cites W3047329036 @default.
- W4220865718 cites W3048628790 @default.
- W4220865718 cites W3064727846 @default.
- W4220865718 cites W3081458948 @default.
- W4220865718 cites W3084360845 @default.
- W4220865718 cites W3087457625 @default.
- W4220865718 cites W3090884723 @default.
- W4220865718 cites W3091020047 @default.
- W4220865718 cites W3093175427 @default.
- W4220865718 cites W3094435505 @default.
- W4220865718 cites W3103026443 @default.
- W4220865718 cites W3107438720 @default.
- W4220865718 cites W3107806087 @default.
- W4220865718 cites W3108902930 @default.
- W4220865718 cites W3111181797 @default.
- W4220865718 cites W3112018172 @default.
- W4220865718 cites W3120522579 @default.
- W4220865718 cites W3131183608 @default.
- W4220865718 cites W3135949739 @default.
- W4220865718 cites W3141742061 @default.
- W4220865718 cites W3142676353 @default.
- W4220865718 cites W3159253102 @default.
- W4220865718 cites W3164794807 @default.
- W4220865718 cites W3165289584 @default.
- W4220865718 cites W3168501817 @default.
- W4220865718 cites W3175091319 @default.
- W4220865718 cites W3177528155 @default.
- W4220865718 cites W3193225244 @default.
- W4220865718 cites W3194479518 @default.
- W4220865718 cites W3199001314 @default.
- W4220865718 cites W3199931129 @default.
- W4220865718 cites W3202484011 @default.
- W4220865718 cites W3202675325 @default.
- W4220865718 cites W3212717635 @default.
- W4220865718 cites W3213300473 @default.