Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220870147> ?p ?o ?g. }
- W4220870147 endingPage "108569" @default.
- W4220870147 startingPage "108569" @default.
- W4220870147 abstract "Forecasting harmful algal blooms (HABs) is an important part of marine environmental monitoring. Algae bloom observation channels includes satellite remote sensing and maritime station monitoring (MSM). Compared with satellite remote sensing image, MSM can collect more accurate data, which includes various seawater inorganic salt content related to the HABs. However, the measured data of MSM is easily affected by regional sediment content and seawater dynamic field, which leads to lack the accurate forecasting models. Therefore, this paper proposed a local spatio-temporal HABs forecasted model (STHFM) based on few impact factors in MSM. The advantage of this model is to first use principal component analysis to select main environment factors (MEFs) related to HABs. Then, this model distinguishes multiple warning levels of HABs in spatio-temporal according to the algae growth rate. Finally, this paper generates continuous MEFs time series information based on the Autoregressive Integrated Moving Average (ARIMA) model in the high-level warning area. And an improved LSTM network with MEFs time series as input is established to forecast HABs in future. The proposed model is tested on the NOAA website public dataset, which contains historical harmful algae Alexandrium data on the East Coast of US. The experimental shows that our model has good HABs monitoring performance. Under the public NOAA Alexandrium dataset, the proposed model can achieve the highest prediction accuracy of 82.1%, and has a small prediction error." @default.
- W4220870147 created "2022-04-03" @default.
- W4220870147 creator A5009521877 @default.
- W4220870147 creator A5012012561 @default.
- W4220870147 creator A5018588825 @default.
- W4220870147 creator A5022939072 @default.
- W4220870147 date "2022-06-01" @default.
- W4220870147 modified "2023-10-04" @default.
- W4220870147 title "Harmful algal bloom warning based on machine learning in maritime site monitoring" @default.
- W4220870147 cites W2055173761 @default.
- W4220870147 cites W2068475755 @default.
- W4220870147 cites W2090157291 @default.
- W4220870147 cites W2165994321 @default.
- W4220870147 cites W2175289263 @default.
- W4220870147 cites W2309105963 @default.
- W4220870147 cites W2346326547 @default.
- W4220870147 cites W2409028535 @default.
- W4220870147 cites W2511122687 @default.
- W4220870147 cites W2514048373 @default.
- W4220870147 cites W2560587063 @default.
- W4220870147 cites W2594438073 @default.
- W4220870147 cites W2604864721 @default.
- W4220870147 cites W2608421173 @default.
- W4220870147 cites W2792287387 @default.
- W4220870147 cites W2793429452 @default.
- W4220870147 cites W2794705340 @default.
- W4220870147 cites W2804164339 @default.
- W4220870147 cites W2806959003 @default.
- W4220870147 cites W2890818119 @default.
- W4220870147 cites W2910201435 @default.
- W4220870147 cites W2921604841 @default.
- W4220870147 cites W2921988245 @default.
- W4220870147 cites W2924369895 @default.
- W4220870147 cites W2929929900 @default.
- W4220870147 cites W2964475014 @default.
- W4220870147 cites W2983995961 @default.
- W4220870147 cites W2985147376 @default.
- W4220870147 cites W3026810043 @default.
- W4220870147 cites W3082271903 @default.
- W4220870147 cites W3106991929 @default.
- W4220870147 cites W831269995 @default.
- W4220870147 doi "https://doi.org/10.1016/j.knosys.2022.108569" @default.
- W4220870147 hasPublicationYear "2022" @default.
- W4220870147 type Work @default.
- W4220870147 citedByCount "9" @default.
- W4220870147 countsByYear W42208701472022 @default.
- W4220870147 countsByYear W42208701472023 @default.
- W4220870147 crossrefType "journal-article" @default.
- W4220870147 hasAuthorship W4220870147A5009521877 @default.
- W4220870147 hasAuthorship W4220870147A5012012561 @default.
- W4220870147 hasAuthorship W4220870147A5018588825 @default.
- W4220870147 hasAuthorship W4220870147A5022939072 @default.
- W4220870147 hasConcept C105795698 @default.
- W4220870147 hasConcept C111368507 @default.
- W4220870147 hasConcept C119857082 @default.
- W4220870147 hasConcept C120305227 @default.
- W4220870147 hasConcept C127313418 @default.
- W4220870147 hasConcept C127413603 @default.
- W4220870147 hasConcept C142796444 @default.
- W4220870147 hasConcept C146978453 @default.
- W4220870147 hasConcept C151406439 @default.
- W4220870147 hasConcept C155567681 @default.
- W4220870147 hasConcept C159877910 @default.
- W4220870147 hasConcept C18903297 @default.
- W4220870147 hasConcept C19269812 @default.
- W4220870147 hasConcept C205649164 @default.
- W4220870147 hasConcept C24338571 @default.
- W4220870147 hasConcept C2779296788 @default.
- W4220870147 hasConcept C2780892065 @default.
- W4220870147 hasConcept C29825287 @default.
- W4220870147 hasConcept C33923547 @default.
- W4220870147 hasConcept C39432304 @default.
- W4220870147 hasConcept C41008148 @default.
- W4220870147 hasConcept C5465852 @default.
- W4220870147 hasConcept C62649853 @default.
- W4220870147 hasConcept C76155785 @default.
- W4220870147 hasConcept C86803240 @default.
- W4220870147 hasConceptScore W4220870147C105795698 @default.
- W4220870147 hasConceptScore W4220870147C111368507 @default.
- W4220870147 hasConceptScore W4220870147C119857082 @default.
- W4220870147 hasConceptScore W4220870147C120305227 @default.
- W4220870147 hasConceptScore W4220870147C127313418 @default.
- W4220870147 hasConceptScore W4220870147C127413603 @default.
- W4220870147 hasConceptScore W4220870147C142796444 @default.
- W4220870147 hasConceptScore W4220870147C146978453 @default.
- W4220870147 hasConceptScore W4220870147C151406439 @default.
- W4220870147 hasConceptScore W4220870147C155567681 @default.
- W4220870147 hasConceptScore W4220870147C159877910 @default.
- W4220870147 hasConceptScore W4220870147C18903297 @default.
- W4220870147 hasConceptScore W4220870147C19269812 @default.
- W4220870147 hasConceptScore W4220870147C205649164 @default.
- W4220870147 hasConceptScore W4220870147C24338571 @default.
- W4220870147 hasConceptScore W4220870147C2779296788 @default.
- W4220870147 hasConceptScore W4220870147C2780892065 @default.
- W4220870147 hasConceptScore W4220870147C29825287 @default.
- W4220870147 hasConceptScore W4220870147C33923547 @default.
- W4220870147 hasConceptScore W4220870147C39432304 @default.
- W4220870147 hasConceptScore W4220870147C41008148 @default.