Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220877635> ?p ?o ?g. }
- W4220877635 endingPage "127772" @default.
- W4220877635 startingPage "127772" @default.
- W4220877635 abstract "• MSME estimates of direct runoff outperformed the SCS-CN on poorly-drained catchments. • Antecedent moisture condition on lowlands was defined by initial water table level. • Soil saturation coefficient divided direct runoff into subsurface and surface runoff. • A threshold of event rainfall depth was found for surface runoff generation. • MSME has potential to assess estimates of land use changes and climate variability. In this study, we calibrated and tested the Soil Conservation Service Curve Number (SCS-CN) based Modified Sahu-Mishra-Eldo (MSME) model for predicting storm event direct runoff ( Q tot ) and its soil saturation coefficient α as a threshold antecedent moisture condition for partitioning into overland surface and shallow subsurface runoff components. The model calibration was performed using 36 storm events from 2008 to 2015 on a 160-ha low-gradient forested watershed (WS80) on poorly drained soil. The model was further validated without calibration using data from 2011 to 2015 on two sites [115 ha (Conifer) and 210 ha (Eccles Church)] and from 2008 to 2011 on a third site, the 100-ha Upper Debidue Creek (UDC), all similar forested watersheds on the Atlantic Coastal Plain, USA. The calibrated MSME model was able to accurately predict the estimated Q tot_pred for the WS80 watershed, with calculated Nash-Sutcliffe efficiency coefficient (NSE), RMSE-standard deviation ratio (RSR), and percent bias (PBIAS) of 0.80, 0.44, and 16.7%, respectively. By applying the same calibrated α value of 0.639 from the WS80 to two other similar poorly drained watersheds, the MSME model satisfactorily predicted the estimated Q tot_pred for both the Eccles Church (NSE = 0.64; RSR = 0.57; PBIAS = 28.9%) and Conifer (NSE = 0.60; RSR = 0.58; PBIAS = 21.3%) watersheds, respectively. The MSME model, however, yielded unsatisfactory results (NSE = -0.13, RSR = 2.06, PBIAS = 616.3%) on the UDC watershed with coarse-textured soils, indicating the possible association of the α coefficient with soil subsurface texture. Based on the analysis of event rainfall and pre-event water table elevation, and linking them with the calibrated α coefficient that describes the proportion of saturated depth in a soil profile, it was found that rainfall was the main determining factor for overland runoff generation. These results demonstrate the MSME model’s potential to predict direct runoff in poorly drained forested watersheds, which serve as a reference for urbanizing coastal landscapes in a changing climate." @default.
- W4220877635 created "2022-04-03" @default.
- W4220877635 creator A5005447304 @default.
- W4220877635 creator A5005714699 @default.
- W4220877635 creator A5023043931 @default.
- W4220877635 creator A5029687208 @default.
- W4220877635 creator A5037704548 @default.
- W4220877635 creator A5042375289 @default.
- W4220877635 creator A5057940217 @default.
- W4220877635 creator A5064869682 @default.
- W4220877635 date "2022-05-01" @default.
- W4220877635 modified "2023-10-06" @default.
- W4220877635 title "Storm event analysis of four forested catchments on the Atlantic coastal plain using a modified SCS-CN rainfall-runoff model" @default.
- W4220877635 cites W1505007762 @default.
- W4220877635 cites W1507764682 @default.
- W4220877635 cites W1537095933 @default.
- W4220877635 cites W1561060043 @default.
- W4220877635 cites W1563791880 @default.
- W4220877635 cites W1590878713 @default.
- W4220877635 cites W1601494730 @default.
- W4220877635 cites W1906886239 @default.
- W4220877635 cites W1907253549 @default.
- W4220877635 cites W1965759874 @default.
- W4220877635 cites W1976980944 @default.
- W4220877635 cites W1987182489 @default.
- W4220877635 cites W1991620954 @default.
- W4220877635 cites W1995848841 @default.
- W4220877635 cites W2008534219 @default.
- W4220877635 cites W2014017508 @default.
- W4220877635 cites W2024694716 @default.
- W4220877635 cites W2026700047 @default.
- W4220877635 cites W2033904036 @default.
- W4220877635 cites W2058998445 @default.
- W4220877635 cites W2060432716 @default.
- W4220877635 cites W2066004884 @default.
- W4220877635 cites W2078789970 @default.
- W4220877635 cites W2081059972 @default.
- W4220877635 cites W2082007556 @default.
- W4220877635 cites W2082304431 @default.
- W4220877635 cites W2094523408 @default.
- W4220877635 cites W2104176315 @default.
- W4220877635 cites W2115345337 @default.
- W4220877635 cites W2152792994 @default.
- W4220877635 cites W2154431159 @default.
- W4220877635 cites W2159166065 @default.
- W4220877635 cites W2159345625 @default.
- W4220877635 cites W2163844495 @default.
- W4220877635 cites W2171579630 @default.
- W4220877635 cites W2219353591 @default.
- W4220877635 cites W2323690695 @default.
- W4220877635 cites W2401070889 @default.
- W4220877635 cites W2404916517 @default.
- W4220877635 cites W2409768010 @default.
- W4220877635 cites W2490988306 @default.
- W4220877635 cites W2756779382 @default.
- W4220877635 cites W2949519950 @default.
- W4220877635 cites W2979974660 @default.
- W4220877635 cites W2989634395 @default.
- W4220877635 cites W2999940539 @default.
- W4220877635 cites W3024313390 @default.
- W4220877635 cites W3027600386 @default.
- W4220877635 cites W3033991297 @default.
- W4220877635 cites W3045288728 @default.
- W4220877635 cites W3049457576 @default.
- W4220877635 cites W3089565467 @default.
- W4220877635 cites W3126177299 @default.
- W4220877635 cites W4231353132 @default.
- W4220877635 cites W4255455647 @default.
- W4220877635 cites W850254660 @default.
- W4220877635 cites W3019018263 @default.
- W4220877635 doi "https://doi.org/10.1016/j.jhydrol.2022.127772" @default.
- W4220877635 hasPublicationYear "2022" @default.
- W4220877635 type Work @default.
- W4220877635 citedByCount "6" @default.
- W4220877635 countsByYear W42208776352022 @default.
- W4220877635 countsByYear W42208776352023 @default.
- W4220877635 crossrefType "journal-article" @default.
- W4220877635 hasAuthorship W4220877635A5005447304 @default.
- W4220877635 hasAuthorship W4220877635A5005714699 @default.
- W4220877635 hasAuthorship W4220877635A5023043931 @default.
- W4220877635 hasAuthorship W4220877635A5029687208 @default.
- W4220877635 hasAuthorship W4220877635A5037704548 @default.
- W4220877635 hasAuthorship W4220877635A5042375289 @default.
- W4220877635 hasAuthorship W4220877635A5057940217 @default.
- W4220877635 hasAuthorship W4220877635A5064869682 @default.
- W4220877635 hasBestOaLocation W42208776351 @default.
- W4220877635 hasConcept C105306849 @default.
- W4220877635 hasConcept C111368507 @default.
- W4220877635 hasConcept C127313418 @default.
- W4220877635 hasConcept C151730666 @default.
- W4220877635 hasConcept C185734153 @default.
- W4220877635 hasConcept C187320778 @default.
- W4220877635 hasConcept C18903297 @default.
- W4220877635 hasConcept C39432304 @default.
- W4220877635 hasConcept C49204034 @default.
- W4220877635 hasConcept C50477045 @default.
- W4220877635 hasConcept C76886044 @default.
- W4220877635 hasConcept C86803240 @default.