Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220883695> ?p ?o ?g. }
- W4220883695 endingPage "17" @default.
- W4220883695 startingPage "1" @default.
- W4220883695 abstract "In this paper, we present a novel extension of the well-known split-step Fourier transform (SSFT) approach for solving the one-dimensional nonlinear Schrödinger equation (NLSE), which incorporates the fiber loss term. While this essential equation governs the pulse propagation in a lossy optical fiber, it is not supported by an exact analytical solution. In this regard, extended versions of the Fourier pseudospectral method (FPSM) and Hopscotch method (HSM) are effectively established as well to cope with the fiber losses effects associated with the pulses’ propagation through the fiber optics, and thus, numerous comparisons are exhaustively conducted among these three compelling numerical approaches to validate their reliability, stability, and accuracy. Based on this, the MATLAB numerical findings bolster that the extended version of the SSFT approach demonstrates superior performance over the other suggested schemes in simulating the solitons propagation in a lossy optical fiber." @default.
- W4220883695 created "2022-04-03" @default.
- W4220883695 creator A5022659692 @default.
- W4220883695 creator A5025586638 @default.
- W4220883695 creator A5044498805 @default.
- W4220883695 creator A5078843750 @default.
- W4220883695 date "2022-03-08" @default.
- W4220883695 modified "2023-10-14" @default.
- W4220883695 title "Extended Split-Step Fourier Transform Approach for Accurate Characterization of Soliton Propagation in a Lossy Optical Fiber" @default.
- W4220883695 cites W1490180844 @default.
- W4220883695 cites W1521863058 @default.
- W4220883695 cites W1542101849 @default.
- W4220883695 cites W1598827554 @default.
- W4220883695 cites W1748708846 @default.
- W4220883695 cites W180745420 @default.
- W4220883695 cites W1976588937 @default.
- W4220883695 cites W1984967815 @default.
- W4220883695 cites W1996212319 @default.
- W4220883695 cites W2021892830 @default.
- W4220883695 cites W2023403160 @default.
- W4220883695 cites W2029497261 @default.
- W4220883695 cites W2051824733 @default.
- W4220883695 cites W2063402633 @default.
- W4220883695 cites W2069080502 @default.
- W4220883695 cites W2079705430 @default.
- W4220883695 cites W2092593433 @default.
- W4220883695 cites W21181848 @default.
- W4220883695 cites W2147094317 @default.
- W4220883695 cites W2151597345 @default.
- W4220883695 cites W2206862772 @default.
- W4220883695 cites W2226126789 @default.
- W4220883695 cites W2281527176 @default.
- W4220883695 cites W2320128973 @default.
- W4220883695 cites W2327077109 @default.
- W4220883695 cites W2564292276 @default.
- W4220883695 cites W2588088117 @default.
- W4220883695 cites W2617100960 @default.
- W4220883695 cites W2789470610 @default.
- W4220883695 cites W2996512020 @default.
- W4220883695 cites W3005382496 @default.
- W4220883695 cites W3048324594 @default.
- W4220883695 cites W3177579524 @default.
- W4220883695 cites W3207240856 @default.
- W4220883695 cites W3208273244 @default.
- W4220883695 cites W4210593608 @default.
- W4220883695 cites W4210649996 @default.
- W4220883695 doi "https://doi.org/10.1155/2022/8316404" @default.
- W4220883695 hasPublicationYear "2022" @default.
- W4220883695 type Work @default.
- W4220883695 citedByCount "1" @default.
- W4220883695 countsByYear W42208836952022 @default.
- W4220883695 crossrefType "journal-article" @default.
- W4220883695 hasAuthorship W4220883695A5022659692 @default.
- W4220883695 hasAuthorship W4220883695A5025586638 @default.
- W4220883695 hasAuthorship W4220883695A5044498805 @default.
- W4220883695 hasAuthorship W4220883695A5078843750 @default.
- W4220883695 hasBestOaLocation W42208836951 @default.
- W4220883695 hasConcept C102519508 @default.
- W4220883695 hasConcept C11413529 @default.
- W4220883695 hasConcept C120665830 @default.
- W4220883695 hasConcept C121332964 @default.
- W4220883695 hasConcept C127413603 @default.
- W4220883695 hasConcept C134306372 @default.
- W4220883695 hasConcept C154945302 @default.
- W4220883695 hasConcept C158622935 @default.
- W4220883695 hasConcept C159985019 @default.
- W4220883695 hasConcept C165021410 @default.
- W4220883695 hasConcept C177937620 @default.
- W4220883695 hasConcept C192562407 @default.
- W4220883695 hasConcept C194232370 @default.
- W4220883695 hasConcept C203024314 @default.
- W4220883695 hasConcept C24326235 @default.
- W4220883695 hasConcept C33923547 @default.
- W4220883695 hasConcept C41008148 @default.
- W4220883695 hasConcept C519885992 @default.
- W4220883695 hasConcept C62520636 @default.
- W4220883695 hasConcept C63036615 @default.
- W4220883695 hasConcept C75172450 @default.
- W4220883695 hasConcept C83774755 @default.
- W4220883695 hasConcept C87651913 @default.
- W4220883695 hasConceptScore W4220883695C102519508 @default.
- W4220883695 hasConceptScore W4220883695C11413529 @default.
- W4220883695 hasConceptScore W4220883695C120665830 @default.
- W4220883695 hasConceptScore W4220883695C121332964 @default.
- W4220883695 hasConceptScore W4220883695C127413603 @default.
- W4220883695 hasConceptScore W4220883695C134306372 @default.
- W4220883695 hasConceptScore W4220883695C154945302 @default.
- W4220883695 hasConceptScore W4220883695C158622935 @default.
- W4220883695 hasConceptScore W4220883695C159985019 @default.
- W4220883695 hasConceptScore W4220883695C165021410 @default.
- W4220883695 hasConceptScore W4220883695C177937620 @default.
- W4220883695 hasConceptScore W4220883695C192562407 @default.
- W4220883695 hasConceptScore W4220883695C194232370 @default.
- W4220883695 hasConceptScore W4220883695C203024314 @default.
- W4220883695 hasConceptScore W4220883695C24326235 @default.
- W4220883695 hasConceptScore W4220883695C33923547 @default.
- W4220883695 hasConceptScore W4220883695C41008148 @default.
- W4220883695 hasConceptScore W4220883695C519885992 @default.