Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220888081> ?p ?o ?g. }
- W4220888081 endingPage "107010" @default.
- W4220888081 startingPage "107010" @default.
- W4220888081 abstract "In this paper, a novel approach using deep learning-assisted wavefront correction in beam rotation holographic tomography to acquire three-dimensional images of native biological cell samples is described. With digitally recorded holograms, the wavefront aberration is contained in the reconstructed phases. However, there are large computation costs for compensating the phase aberration during the reconstruction. With the aid of a deep convolution network, we present an effective algorithm on the reconstructed phases with sparse data for active wavefront correction. To accomplish this, we developed a Res-Unet scheme to segment the cell region from its background aberration and a deep regression network for the representation of the aberration on Zernike orthonormal basis. Moreover, a sparse data fitting algorithm was used to predict the Zernike coefficients of whole scanning angles from the collected sparse data. As a result, the proposed algorithm is capable of accurately correcting the background aberration and much faster than the original plain algorithm." @default.
- W4220888081 created "2022-04-03" @default.
- W4220888081 creator A5020673163 @default.
- W4220888081 creator A5035376050 @default.
- W4220888081 creator A5049276354 @default.
- W4220888081 creator A5054510529 @default.
- W4220888081 creator A5066494431 @default.
- W4220888081 date "2022-07-01" @default.
- W4220888081 modified "2023-09-26" @default.
- W4220888081 title "Deep learning-assisted wavefront correction with sparse data for holographic tomography" @default.
- W4220888081 cites W1509664920 @default.
- W4220888081 cites W1901129140 @default.
- W4220888081 cites W2066578284 @default.
- W4220888081 cites W2088259636 @default.
- W4220888081 cites W2143794919 @default.
- W4220888081 cites W2187607191 @default.
- W4220888081 cites W2194775991 @default.
- W4220888081 cites W2565516711 @default.
- W4220888081 cites W2593966629 @default.
- W4220888081 cites W2600268916 @default.
- W4220888081 cites W2612688942 @default.
- W4220888081 cites W2648289572 @default.
- W4220888081 cites W2790166445 @default.
- W4220888081 cites W2792179230 @default.
- W4220888081 cites W2797502808 @default.
- W4220888081 cites W2797713963 @default.
- W4220888081 cites W2810363749 @default.
- W4220888081 cites W2884585870 @default.
- W4220888081 cites W2900139389 @default.
- W4220888081 cites W2964169756 @default.
- W4220888081 cites W2964231206 @default.
- W4220888081 cites W2964350391 @default.
- W4220888081 cites W2972343969 @default.
- W4220888081 cites W2989780510 @default.
- W4220888081 cites W3000438150 @default.
- W4220888081 cites W3007332181 @default.
- W4220888081 cites W3036092195 @default.
- W4220888081 cites W3036527017 @default.
- W4220888081 cites W3098621705 @default.
- W4220888081 cites W3099186728 @default.
- W4220888081 cites W3111917677 @default.
- W4220888081 cites W3128222970 @default.
- W4220888081 cites W3178985013 @default.
- W4220888081 cites W3198499991 @default.
- W4220888081 cites W3213084563 @default.
- W4220888081 cites W4241300192 @default.
- W4220888081 cites W4362203946 @default.
- W4220888081 doi "https://doi.org/10.1016/j.optlaseng.2022.107010" @default.
- W4220888081 hasPublicationYear "2022" @default.
- W4220888081 type Work @default.
- W4220888081 citedByCount "4" @default.
- W4220888081 countsByYear W42208880812022 @default.
- W4220888081 countsByYear W42208880812023 @default.
- W4220888081 crossrefType "journal-article" @default.
- W4220888081 hasAuthorship W4220888081A5020673163 @default.
- W4220888081 hasAuthorship W4220888081A5035376050 @default.
- W4220888081 hasAuthorship W4220888081A5049276354 @default.
- W4220888081 hasAuthorship W4220888081A5054510529 @default.
- W4220888081 hasAuthorship W4220888081A5066494431 @default.
- W4220888081 hasBestOaLocation W42208880812 @default.
- W4220888081 hasConcept C108583219 @default.
- W4220888081 hasConcept C11413529 @default.
- W4220888081 hasConcept C120665830 @default.
- W4220888081 hasConcept C121332964 @default.
- W4220888081 hasConcept C132771110 @default.
- W4220888081 hasConcept C136872047 @default.
- W4220888081 hasConcept C141379421 @default.
- W4220888081 hasConcept C154945302 @default.
- W4220888081 hasConcept C165699331 @default.
- W4220888081 hasConcept C187590223 @default.
- W4220888081 hasConcept C2779898584 @default.
- W4220888081 hasConcept C31972630 @default.
- W4220888081 hasConcept C41008148 @default.
- W4220888081 hasConcept C45347329 @default.
- W4220888081 hasConcept C50644808 @default.
- W4220888081 hasConcept C74050887 @default.
- W4220888081 hasConcept C92423082 @default.
- W4220888081 hasConceptScore W4220888081C108583219 @default.
- W4220888081 hasConceptScore W4220888081C11413529 @default.
- W4220888081 hasConceptScore W4220888081C120665830 @default.
- W4220888081 hasConceptScore W4220888081C121332964 @default.
- W4220888081 hasConceptScore W4220888081C132771110 @default.
- W4220888081 hasConceptScore W4220888081C136872047 @default.
- W4220888081 hasConceptScore W4220888081C141379421 @default.
- W4220888081 hasConceptScore W4220888081C154945302 @default.
- W4220888081 hasConceptScore W4220888081C165699331 @default.
- W4220888081 hasConceptScore W4220888081C187590223 @default.
- W4220888081 hasConceptScore W4220888081C2779898584 @default.
- W4220888081 hasConceptScore W4220888081C31972630 @default.
- W4220888081 hasConceptScore W4220888081C41008148 @default.
- W4220888081 hasConceptScore W4220888081C45347329 @default.
- W4220888081 hasConceptScore W4220888081C50644808 @default.
- W4220888081 hasConceptScore W4220888081C74050887 @default.
- W4220888081 hasConceptScore W4220888081C92423082 @default.
- W4220888081 hasLocation W42208880811 @default.
- W4220888081 hasLocation W42208880812 @default.
- W4220888081 hasOpenAccess W4220888081 @default.
- W4220888081 hasPrimaryLocation W42208880811 @default.