Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220891279> ?p ?o ?g. }
- W4220891279 endingPage "112969" @default.
- W4220891279 startingPage "112969" @default.
- W4220891279 abstract "Synthetic aperture radar (SAR) is a powerful tool for monitoring sea states in terms of the significant wave height (SWH). Regarding the specific wave mode, to date, the previous empirical models for estimating SWH from SAR data rely on single polarization. In the emerging deep learning era, few published quad-polarized SAR SWH retrieval algorithms have been based on machine learning technique, and whether quad-polarimetry improves the skill of wave height estimation remains a question. Here we propose a deep residual convolutional neural network-based SAR SWH retrieval algorithm in quad-polarization. By collocating WaveWatch III sea state hindcasts and all available archives of quad-polarized Chinese Gaofen-3 SAR imagettes in wave mode, a database with approximately 30,000 matchups was employed to establish our deeply-learned network. The GaoFen-3 significant wave height retrievals were validated against the hindcast dataset independent of training along with altimeter observations. The result of good consistency in terms of a root mean square error of 0.32 m (under sea state conditions of approximately 0.5–7.0 m) outperforms the existing Gaofen-3 wave height retrieval algorithms. Additionally, this paper introduces a discussion about the contribution of polarizations by comparing SWH derived from single-, dual- and quad-polarized deep convolutional neural networks. Single-polarized Gaofen-3 SAR data are found to be sufficient to provide accurate estimates compared to quad-polarization via a deep learning model under moderate sea conditions. Exploitation of SAR quad-polarimetry information will improve SAR wave height retrievals under high sea conditions." @default.
- W4220891279 created "2022-04-03" @default.
- W4220891279 creator A5021471823 @default.
- W4220891279 creator A5024006251 @default.
- W4220891279 creator A5033098447 @default.
- W4220891279 creator A5053356188 @default.
- W4220891279 creator A5057141411 @default.
- W4220891279 creator A5086389880 @default.
- W4220891279 creator A5091380497 @default.
- W4220891279 date "2022-05-01" @default.
- W4220891279 modified "2023-10-18" @default.
- W4220891279 title "Quad-polarimetric SAR sea state retrieval algorithm from Chinese Gaofen-3 wave mode imagettes via deep learning" @default.
- W4220891279 cites W1486505694 @default.
- W4220891279 cites W1967870903 @default.
- W4220891279 cites W1979444755 @default.
- W4220891279 cites W1985442420 @default.
- W4220891279 cites W1989512941 @default.
- W4220891279 cites W1995609103 @default.
- W4220891279 cites W1996760610 @default.
- W4220891279 cites W2007059359 @default.
- W4220891279 cites W2037062718 @default.
- W4220891279 cites W2048490715 @default.
- W4220891279 cites W2068939803 @default.
- W4220891279 cites W2093637980 @default.
- W4220891279 cites W2096254855 @default.
- W4220891279 cites W2103501618 @default.
- W4220891279 cites W2119225191 @default.
- W4220891279 cites W2128120064 @default.
- W4220891279 cites W2166652137 @default.
- W4220891279 cites W2168949884 @default.
- W4220891279 cites W2176351688 @default.
- W4220891279 cites W2180070298 @default.
- W4220891279 cites W2241832725 @default.
- W4220891279 cites W2521790580 @default.
- W4220891279 cites W2564480282 @default.
- W4220891279 cites W2737416704 @default.
- W4220891279 cites W2767305344 @default.
- W4220891279 cites W2790232940 @default.
- W4220891279 cites W2792975162 @default.
- W4220891279 cites W2804439408 @default.
- W4220891279 cites W2885778651 @default.
- W4220891279 cites W2902998575 @default.
- W4220891279 cites W2905276979 @default.
- W4220891279 cites W2910003947 @default.
- W4220891279 cites W2911340960 @default.
- W4220891279 cites W2913323966 @default.
- W4220891279 cites W2914719971 @default.
- W4220891279 cites W2927611741 @default.
- W4220891279 cites W2944692824 @default.
- W4220891279 cites W2946286997 @default.
- W4220891279 cites W2964374910 @default.
- W4220891279 cites W2966989506 @default.
- W4220891279 cites W298052795 @default.
- W4220891279 cites W2983088728 @default.
- W4220891279 cites W2986607448 @default.
- W4220891279 cites W3005164074 @default.
- W4220891279 cites W3008439211 @default.
- W4220891279 cites W3037800132 @default.
- W4220891279 cites W3042769353 @default.
- W4220891279 cites W3043321134 @default.
- W4220891279 cites W3083589710 @default.
- W4220891279 cites W3105778288 @default.
- W4220891279 cites W3130486905 @default.
- W4220891279 cites W3132139983 @default.
- W4220891279 doi "https://doi.org/10.1016/j.rse.2022.112969" @default.
- W4220891279 hasPublicationYear "2022" @default.
- W4220891279 type Work @default.
- W4220891279 citedByCount "14" @default.
- W4220891279 countsByYear W42208912792022 @default.
- W4220891279 countsByYear W42208912792023 @default.
- W4220891279 crossrefType "journal-article" @default.
- W4220891279 hasAuthorship W4220891279A5021471823 @default.
- W4220891279 hasAuthorship W4220891279A5024006251 @default.
- W4220891279 hasAuthorship W4220891279A5033098447 @default.
- W4220891279 hasAuthorship W4220891279A5053356188 @default.
- W4220891279 hasAuthorship W4220891279A5057141411 @default.
- W4220891279 hasAuthorship W4220891279A5086389880 @default.
- W4220891279 hasAuthorship W4220891279A5091380497 @default.
- W4220891279 hasConcept C108583219 @default.
- W4220891279 hasConcept C111368507 @default.
- W4220891279 hasConcept C11413529 @default.
- W4220891279 hasConcept C119857082 @default.
- W4220891279 hasConcept C120665830 @default.
- W4220891279 hasConcept C121332964 @default.
- W4220891279 hasConcept C127313418 @default.
- W4220891279 hasConcept C153294291 @default.
- W4220891279 hasConcept C154945302 @default.
- W4220891279 hasConcept C165082838 @default.
- W4220891279 hasConcept C191486275 @default.
- W4220891279 hasConcept C205649164 @default.
- W4220891279 hasConcept C2781147146 @default.
- W4220891279 hasConcept C28493345 @default.
- W4220891279 hasConcept C41008148 @default.
- W4220891279 hasConcept C50644808 @default.
- W4220891279 hasConcept C62649853 @default.
- W4220891279 hasConcept C81363708 @default.
- W4220891279 hasConcept C83002819 @default.
- W4220891279 hasConcept C85910571 @default.