Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220897422> ?p ?o ?g. }
- W4220897422 endingPage "2560" @default.
- W4220897422 startingPage "2560" @default.
- W4220897422 abstract "In human activity recognition (HAR), activities are automatically recognized and classified from a continuous stream of input sensor data. Although the scientific community has developed multiple approaches for various sports in recent years, marginal sports are rarely considered. These approaches cannot directly be applied to marginal sports, where available data are sparse and costly to acquire. Thus, we recorded and annotated inertial measurement unit (IMU) data containing different types of Ultimate Frisbee throws to investigate whether Convolutional Neural Networks (CNNs) and transfer learning can solve this. The relevant actions were automatically detected and were classified using a CNN. The proposed pipeline reaches an accuracy of 66.6%, distinguishing between nine different fine-grained classes. For the classification of the three basic throwing techniques, we achieve an accuracy of 89.9%. Furthermore, the results were compared to a transfer learning-based approach using a beach volleyball dataset as the source. Even if transfer learning could not improve the classification accuracy, the training time was significantly reduced. Finally, the effect of transfer learning on a reduced dataset, i.e., without data augmentations, is analyzed. While having the same number of training subjects, using the pre-trained weights improves the generalization capabilities of the network, i.e., increasing the accuracy and F1 score. This shows that transfer learning can be beneficial, especially when dealing with small datasets, as in marginal sports, and therefore, can improve the tracking of marginal sports." @default.
- W4220897422 created "2022-04-03" @default.
- W4220897422 creator A5014144494 @default.
- W4220897422 creator A5018455917 @default.
- W4220897422 creator A5050253843 @default.
- W4220897422 creator A5052223914 @default.
- W4220897422 date "2022-03-27" @default.
- W4220897422 modified "2023-10-18" @default.
- W4220897422 title "Wearable Sensors for Activity Recognition in Ultimate Frisbee Using Convolutional Neural Networks and Transfer Learning" @default.
- W4220897422 cites W1893956891 @default.
- W4220897422 cites W1977005232 @default.
- W4220897422 cites W2037265949 @default.
- W4220897422 cites W2094286293 @default.
- W4220897422 cites W2103804275 @default.
- W4220897422 cites W2107686700 @default.
- W4220897422 cites W2147800946 @default.
- W4220897422 cites W2148143831 @default.
- W4220897422 cites W2550797816 @default.
- W4220897422 cites W2590106597 @default.
- W4220897422 cites W2594508350 @default.
- W4220897422 cites W2608983188 @default.
- W4220897422 cites W2770456481 @default.
- W4220897422 cites W2791827527 @default.
- W4220897422 cites W2897764506 @default.
- W4220897422 cites W2906031885 @default.
- W4220897422 cites W2970993639 @default.
- W4220897422 cites W3122047039 @default.
- W4220897422 cites W3157993706 @default.
- W4220897422 cites W3170568663 @default.
- W4220897422 doi "https://doi.org/10.3390/s22072560" @default.
- W4220897422 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35408174" @default.
- W4220897422 hasPublicationYear "2022" @default.
- W4220897422 type Work @default.
- W4220897422 citedByCount "6" @default.
- W4220897422 countsByYear W42208974222022 @default.
- W4220897422 countsByYear W42208974222023 @default.
- W4220897422 crossrefType "journal-article" @default.
- W4220897422 hasAuthorship W4220897422A5014144494 @default.
- W4220897422 hasAuthorship W4220897422A5018455917 @default.
- W4220897422 hasAuthorship W4220897422A5050253843 @default.
- W4220897422 hasAuthorship W4220897422A5052223914 @default.
- W4220897422 hasBestOaLocation W42208974221 @default.
- W4220897422 hasConcept C119857082 @default.
- W4220897422 hasConcept C121687571 @default.
- W4220897422 hasConcept C127413603 @default.
- W4220897422 hasConcept C134306372 @default.
- W4220897422 hasConcept C149635348 @default.
- W4220897422 hasConcept C150594956 @default.
- W4220897422 hasConcept C150899416 @default.
- W4220897422 hasConcept C153180895 @default.
- W4220897422 hasConcept C154945302 @default.
- W4220897422 hasConcept C173608175 @default.
- W4220897422 hasConcept C177148314 @default.
- W4220897422 hasConcept C199360897 @default.
- W4220897422 hasConcept C207451115 @default.
- W4220897422 hasConcept C2776175482 @default.
- W4220897422 hasConcept C33923547 @default.
- W4220897422 hasConcept C41008148 @default.
- W4220897422 hasConcept C43521106 @default.
- W4220897422 hasConcept C78519656 @default.
- W4220897422 hasConcept C79061980 @default.
- W4220897422 hasConcept C81363708 @default.
- W4220897422 hasConceptScore W4220897422C119857082 @default.
- W4220897422 hasConceptScore W4220897422C121687571 @default.
- W4220897422 hasConceptScore W4220897422C127413603 @default.
- W4220897422 hasConceptScore W4220897422C134306372 @default.
- W4220897422 hasConceptScore W4220897422C149635348 @default.
- W4220897422 hasConceptScore W4220897422C150594956 @default.
- W4220897422 hasConceptScore W4220897422C150899416 @default.
- W4220897422 hasConceptScore W4220897422C153180895 @default.
- W4220897422 hasConceptScore W4220897422C154945302 @default.
- W4220897422 hasConceptScore W4220897422C173608175 @default.
- W4220897422 hasConceptScore W4220897422C177148314 @default.
- W4220897422 hasConceptScore W4220897422C199360897 @default.
- W4220897422 hasConceptScore W4220897422C207451115 @default.
- W4220897422 hasConceptScore W4220897422C2776175482 @default.
- W4220897422 hasConceptScore W4220897422C33923547 @default.
- W4220897422 hasConceptScore W4220897422C41008148 @default.
- W4220897422 hasConceptScore W4220897422C43521106 @default.
- W4220897422 hasConceptScore W4220897422C78519656 @default.
- W4220897422 hasConceptScore W4220897422C79061980 @default.
- W4220897422 hasConceptScore W4220897422C81363708 @default.
- W4220897422 hasFunder F4320320879 @default.
- W4220897422 hasIssue "7" @default.
- W4220897422 hasLocation W42208974221 @default.
- W4220897422 hasLocation W42208974222 @default.
- W4220897422 hasLocation W42208974223 @default.
- W4220897422 hasLocation W42208974224 @default.
- W4220897422 hasOpenAccess W4220897422 @default.
- W4220897422 hasPrimaryLocation W42208974221 @default.
- W4220897422 hasRelatedWork W2907173324 @default.
- W4220897422 hasRelatedWork W2951851360 @default.
- W4220897422 hasRelatedWork W3012393889 @default.
- W4220897422 hasRelatedWork W3018421652 @default.
- W4220897422 hasRelatedWork W3021430260 @default.
- W4220897422 hasRelatedWork W3086891048 @default.
- W4220897422 hasRelatedWork W3091976719 @default.
- W4220897422 hasRelatedWork W3135818718 @default.