Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220899488> ?p ?o ?g. }
- W4220899488 endingPage "2684" @default.
- W4220899488 startingPage "2684" @default.
- W4220899488 abstract "Identification of characteristic points in physiological signals, such as the peak of the R wave in the electrocardiogram and the peak of the systolic wave of the photopletismogram, is a fundamental step for the quantification of clinical parameters, such as the pulse transit time. In this work, we presented a novel neural architecture, called eMTUnet, to automate point identification in multivariate signals acquired with a chest-worn device. The eMTUnet consists of a single deep network capable of performing three tasks simultaneously: (i) localization in time of characteristic points (labeling task), (ii) evaluation of the quality of signals (classification task); (iii) estimation of the reliability of classification (reliability task). Preliminary results in overnight monitoring showcased the ability to detect characteristic points in the four signals with a recall index of about 1.00, 0.90, 0.90, and 0.80, respectively. The accuracy of the signal quality classification was about 0.90, on average over four different classes. The average confidence of the correctly classified signals, against the misclassifications, was 0.93 vs. 0.52, proving the worthiness of the confidence index, which may better qualify the point identification. From the achieved outcomes, we point out that high-quality segmentation and classification are both ensured, which brings the use of a multi-modal framework, composed of wearable sensors and artificial intelligence, incrementally closer to clinical translation." @default.
- W4220899488 created "2022-04-03" @default.
- W4220899488 creator A5026263430 @default.
- W4220899488 creator A5039522746 @default.
- W4220899488 creator A5045104020 @default.
- W4220899488 creator A5047531551 @default.
- W4220899488 creator A5066647309 @default.
- W4220899488 creator A5079877840 @default.
- W4220899488 creator A5084202997 @default.
- W4220899488 date "2022-03-31" @default.
- W4220899488 modified "2023-09-27" @default.
- W4220899488 title "Identification of Characteristic Points in Multivariate Physiological Signals by Sensor Fusion and Multi-Task Deep Networks" @default.
- W4220899488 cites W1567017503 @default.
- W4220899488 cites W1901129140 @default.
- W4220899488 cites W2005741801 @default.
- W4220899488 cites W2035454867 @default.
- W4220899488 cites W2097117768 @default.
- W4220899488 cites W2169010496 @default.
- W4220899488 cites W2293235042 @default.
- W4220899488 cites W2338236284 @default.
- W4220899488 cites W2341394157 @default.
- W4220899488 cites W2342504937 @default.
- W4220899488 cites W2551912285 @default.
- W4220899488 cites W2734349601 @default.
- W4220899488 cites W2752782242 @default.
- W4220899488 cites W2768374926 @default.
- W4220899488 cites W2804099118 @default.
- W4220899488 cites W2805713564 @default.
- W4220899488 cites W2807343060 @default.
- W4220899488 cites W2884996318 @default.
- W4220899488 cites W2891328462 @default.
- W4220899488 cites W2894956427 @default.
- W4220899488 cites W2896436581 @default.
- W4220899488 cites W2897052379 @default.
- W4220899488 cites W2902379040 @default.
- W4220899488 cites W2911420178 @default.
- W4220899488 cites W2912120729 @default.
- W4220899488 cites W2919598938 @default.
- W4220899488 cites W2922473356 @default.
- W4220899488 cites W2931807421 @default.
- W4220899488 cites W2933425445 @default.
- W4220899488 cites W2942813403 @default.
- W4220899488 cites W2946897865 @default.
- W4220899488 cites W2948321969 @default.
- W4220899488 cites W2957529213 @default.
- W4220899488 cites W2965318968 @default.
- W4220899488 cites W2966539497 @default.
- W4220899488 cites W3007767102 @default.
- W4220899488 cites W3012297411 @default.
- W4220899488 cites W3012455674 @default.
- W4220899488 cites W3012557973 @default.
- W4220899488 cites W3014547703 @default.
- W4220899488 cites W3014983680 @default.
- W4220899488 cites W3023858750 @default.
- W4220899488 cites W3024959804 @default.
- W4220899488 cites W3035182293 @default.
- W4220899488 cites W3042565136 @default.
- W4220899488 cites W3046779950 @default.
- W4220899488 cites W3049216025 @default.
- W4220899488 cites W3082166846 @default.
- W4220899488 cites W3089155918 @default.
- W4220899488 cites W3099110255 @default.
- W4220899488 cites W3109414960 @default.
- W4220899488 cites W3156809527 @default.
- W4220899488 cites W3169761167 @default.
- W4220899488 cites W4200374993 @default.
- W4220899488 cites W4210305333 @default.
- W4220899488 cites W4210333113 @default.
- W4220899488 cites W4214660758 @default.
- W4220899488 doi "https://doi.org/10.3390/s22072684" @default.
- W4220899488 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35408297" @default.
- W4220899488 hasPublicationYear "2022" @default.
- W4220899488 type Work @default.
- W4220899488 citedByCount "4" @default.
- W4220899488 countsByYear W42208994882022 @default.
- W4220899488 countsByYear W42208994882023 @default.
- W4220899488 crossrefType "journal-article" @default.
- W4220899488 hasAuthorship W4220899488A5026263430 @default.
- W4220899488 hasAuthorship W4220899488A5039522746 @default.
- W4220899488 hasAuthorship W4220899488A5045104020 @default.
- W4220899488 hasAuthorship W4220899488A5047531551 @default.
- W4220899488 hasAuthorship W4220899488A5066647309 @default.
- W4220899488 hasAuthorship W4220899488A5079877840 @default.
- W4220899488 hasAuthorship W4220899488A5084202997 @default.
- W4220899488 hasBestOaLocation W42208994881 @default.
- W4220899488 hasConcept C116834253 @default.
- W4220899488 hasConcept C121332964 @default.
- W4220899488 hasConcept C127413603 @default.
- W4220899488 hasConcept C149635348 @default.
- W4220899488 hasConcept C150594956 @default.
- W4220899488 hasConcept C153180895 @default.
- W4220899488 hasConcept C154945302 @default.
- W4220899488 hasConcept C163258240 @default.
- W4220899488 hasConcept C199360897 @default.
- W4220899488 hasConcept C201995342 @default.
- W4220899488 hasConcept C2779843651 @default.
- W4220899488 hasConcept C2780451532 @default.
- W4220899488 hasConcept C28490314 @default.