Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220904976> ?p ?o ?g. }
- W4220904976 endingPage "4438" @default.
- W4220904976 startingPage "4427" @default.
- W4220904976 abstract "Adsorptive desulfurization (ADS) of hydrocarbon fuels using zeolite-based adsorbents holds great promise due to the mild conditions required to remove sulfur, thus addressing the energy and environmental concerns. However, screening of the ever-increasing number of potential ADS zeolites for adsorptive capacity is increasingly intractable. Furthermore, there is no consensus on the parameters with a dominating influence; hence, adsorbent synthesis design has remained an art. Machine learning (ML) has gained popularity as a powerful tool for understanding the catalytic mechanism and providing insights into catalytic design. In this study, we used multiple linear regression (MLR) and random forest (RF) regression to explore the process of ADS by zeolites using data from the literature. We found better predictive performance under the RF model (R2 = 0.93) than the MLR model (R2 = 0.88), which violated the assumption of linearity. The initial adsorbate concentration showed the highest relative importance of the variables, followed by zeolite properties (metal ion, mesoporous volume, pore size, Si/Al ratio, and surface area) for ADS activity. Our RF prediction model may be used in place of experimental ADS zeolite screening, cutting down on time and resource requirements. This work demonstrates the utility of ML and literature survey data as an inexpensive alternative to experimentation when doing research to obtain mechanistic insight into the complex process of ADS." @default.
- W4220904976 created "2022-04-03" @default.
- W4220904976 creator A5051067239 @default.
- W4220904976 creator A5059897295 @default.
- W4220904976 creator A5063388127 @default.
- W4220904976 creator A5071411150 @default.
- W4220904976 creator A5072513496 @default.
- W4220904976 date "2022-03-30" @default.
- W4220904976 modified "2023-09-25" @default.
- W4220904976 title "Insight into Adsorptive Desulfurization by Zeolites: A Machine Learning Exploration" @default.
- W4220904976 cites W1211307375 @default.
- W4220904976 cites W1530903722 @default.
- W4220904976 cites W1536984618 @default.
- W4220904976 cites W1859566339 @default.
- W4220904976 cites W1901616594 @default.
- W4220904976 cites W1966274595 @default.
- W4220904976 cites W1968292801 @default.
- W4220904976 cites W1970737940 @default.
- W4220904976 cites W1990605623 @default.
- W4220904976 cites W1996378961 @default.
- W4220904976 cites W1998258821 @default.
- W4220904976 cites W2011938334 @default.
- W4220904976 cites W2013888409 @default.
- W4220904976 cites W2023473980 @default.
- W4220904976 cites W2026657006 @default.
- W4220904976 cites W2066534141 @default.
- W4220904976 cites W2069833192 @default.
- W4220904976 cites W2076370150 @default.
- W4220904976 cites W2079468519 @default.
- W4220904976 cites W2101052591 @default.
- W4220904976 cites W2111684210 @default.
- W4220904976 cites W2149541458 @default.
- W4220904976 cites W2151004739 @default.
- W4220904976 cites W2216536395 @default.
- W4220904976 cites W2302146281 @default.
- W4220904976 cites W2500528309 @default.
- W4220904976 cites W2553871783 @default.
- W4220904976 cites W2565355992 @default.
- W4220904976 cites W2729493797 @default.
- W4220904976 cites W2736101782 @default.
- W4220904976 cites W2889529110 @default.
- W4220904976 cites W2899063946 @default.
- W4220904976 cites W2899714870 @default.
- W4220904976 cites W2911964244 @default.
- W4220904976 cites W2916711966 @default.
- W4220904976 cites W2936166854 @default.
- W4220904976 cites W2940613692 @default.
- W4220904976 cites W2945403544 @default.
- W4220904976 cites W2946512733 @default.
- W4220904976 cites W2949006411 @default.
- W4220904976 cites W2953782915 @default.
- W4220904976 cites W2955227449 @default.
- W4220904976 cites W2959004760 @default.
- W4220904976 cites W2972677543 @default.
- W4220904976 cites W2997479617 @default.
- W4220904976 cites W2997591727 @default.
- W4220904976 cites W2998830881 @default.
- W4220904976 cites W2999605628 @default.
- W4220904976 cites W3006436762 @default.
- W4220904976 cites W3035869533 @default.
- W4220904976 cites W3035938361 @default.
- W4220904976 cites W3081529317 @default.
- W4220904976 cites W3092453270 @default.
- W4220904976 cites W3093274391 @default.
- W4220904976 cites W3102363003 @default.
- W4220904976 cites W3105183541 @default.
- W4220904976 cites W3112713772 @default.
- W4220904976 cites W3128444150 @default.
- W4220904976 cites W3135375056 @default.
- W4220904976 cites W3136435360 @default.
- W4220904976 cites W3139274269 @default.
- W4220904976 cites W3193591473 @default.
- W4220904976 cites W382458928 @default.
- W4220904976 cites W4240454744 @default.
- W4220904976 cites W4247575175 @default.
- W4220904976 cites W4251344181 @default.
- W4220904976 cites W562269991 @default.
- W4220904976 doi "https://doi.org/10.1021/acs.energyfuels.1c03949" @default.
- W4220904976 hasPublicationYear "2022" @default.
- W4220904976 type Work @default.
- W4220904976 citedByCount "3" @default.
- W4220904976 countsByYear W42209049762022 @default.
- W4220904976 countsByYear W42209049762023 @default.
- W4220904976 crossrefType "journal-article" @default.
- W4220904976 hasAuthorship W4220904976A5051067239 @default.
- W4220904976 hasAuthorship W4220904976A5059897295 @default.
- W4220904976 hasAuthorship W4220904976A5063388127 @default.
- W4220904976 hasAuthorship W4220904976A5071411150 @default.
- W4220904976 hasAuthorship W4220904976A5072513496 @default.
- W4220904976 hasConcept C121332964 @default.
- W4220904976 hasConcept C127413603 @default.
- W4220904976 hasConcept C150394285 @default.
- W4220904976 hasConcept C161790260 @default.
- W4220904976 hasConcept C178790620 @default.
- W4220904976 hasConcept C185592680 @default.
- W4220904976 hasConcept C18762648 @default.
- W4220904976 hasConcept C21880701 @default.
- W4220904976 hasConcept C2778077586 @default.