Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220909120> ?p ?o ?g. }
- W4220909120 endingPage "107799" @default.
- W4220909120 startingPage "107799" @default.
- W4220909120 abstract "Estuaries play a fundamental role in the renewal of fisheries resources, as they hold nurseries for many juvenile fish species. Estimating juveniles’ abundance in estuaries is therefore key to improve stock assessment models, anticipate future recruitment and prevent crises related to biomass collapse. While geostatistical methods have been widely used in fisheries science to estimate species’ abundance during offshore scientific surveys, difficulties arise when using these methods in estuaries. Indeed, these ecosystems are characterized by their irregular and often non-convex morphology, their environmental gradients (salinity, depth), and their tidal dynamics which question the validity of the hypothesis of second-order stationarity, fundamental to the theory of intrinsic geostatistics. Therefore, we tested the performance of different geostatistical methods to account for the complexity of these ecosystems and quantify robust indices of abundance adapted to estuaries. We used density data of juvenile sea bass (Dicentrarchus labrax) sampled with demersal trawls in the Loire River collected over three consecutive years and tested a metric space for which the distance along the estuary is considered. We took into account the non-stationarity of densities with either a transitive approach or an intrinsic approach with spatio-temporal external drifts, which takes into account the effects of tides and environmental gradients. These geostatistical methods allowed us to produce densities distribution maps and had substantially greater predictive capabilities than the stratified random estimator (classical reference estimator). However, geostatistical methods consistently had larger CVs than the stratified random estimator because the latter ignores the spatio-temporal distribution of sampling points leading to uncertainties underestimates and hence overly optimistic confidence intervals. The use of geostatistically computed abundance indices in an assessment model appears to be a conservative approach, whose uncertainties would allow a more robust adjustment trade-off between different indices when estimating recruitment in estuaries." @default.
- W4220909120 created "2022-04-03" @default.
- W4220909120 creator A5022383034 @default.
- W4220909120 creator A5041960464 @default.
- W4220909120 creator A5056023053 @default.
- W4220909120 creator A5080775919 @default.
- W4220909120 date "2022-05-01" @default.
- W4220909120 modified "2023-10-18" @default.
- W4220909120 title "Estimating abundance indices of juvenile fish in estuaries using Geostatistics: An example of European sea bass (Dicentrarchus labrax)" @default.
- W4220909120 cites W1747046542 @default.
- W4220909120 cites W1973765757 @default.
- W4220909120 cites W1979805723 @default.
- W4220909120 cites W1984538239 @default.
- W4220909120 cites W1987560896 @default.
- W4220909120 cites W2010700815 @default.
- W4220909120 cites W2014762417 @default.
- W4220909120 cites W2014772157 @default.
- W4220909120 cites W2019688758 @default.
- W4220909120 cites W2022584702 @default.
- W4220909120 cites W2024963769 @default.
- W4220909120 cites W2036786293 @default.
- W4220909120 cites W2040320783 @default.
- W4220909120 cites W2046232637 @default.
- W4220909120 cites W2051135860 @default.
- W4220909120 cites W2070989132 @default.
- W4220909120 cites W2072402262 @default.
- W4220909120 cites W2075125986 @default.
- W4220909120 cites W2075999411 @default.
- W4220909120 cites W2086327335 @default.
- W4220909120 cites W2099238523 @default.
- W4220909120 cites W2107239517 @default.
- W4220909120 cites W2110850082 @default.
- W4220909120 cites W2112038911 @default.
- W4220909120 cites W2153200946 @default.
- W4220909120 cites W2154116076 @default.
- W4220909120 cites W2160698120 @default.
- W4220909120 cites W2170902623 @default.
- W4220909120 cites W2172270151 @default.
- W4220909120 cites W2183722495 @default.
- W4220909120 cites W2191698993 @default.
- W4220909120 cites W2253553783 @default.
- W4220909120 cites W2476336840 @default.
- W4220909120 cites W2519628399 @default.
- W4220909120 cites W2703197096 @default.
- W4220909120 cites W2791736741 @default.
- W4220909120 cites W2791878165 @default.
- W4220909120 cites W2795064606 @default.
- W4220909120 cites W2883180674 @default.
- W4220909120 cites W2953757482 @default.
- W4220909120 cites W2963394916 @default.
- W4220909120 cites W2965875478 @default.
- W4220909120 cites W3009093292 @default.
- W4220909120 cites W3034353496 @default.
- W4220909120 cites W3160347066 @default.
- W4220909120 cites W3162947774 @default.
- W4220909120 doi "https://doi.org/10.1016/j.ecss.2022.107799" @default.
- W4220909120 hasPublicationYear "2022" @default.
- W4220909120 type Work @default.
- W4220909120 citedByCount "1" @default.
- W4220909120 countsByYear W42209091202022 @default.
- W4220909120 crossrefType "journal-article" @default.
- W4220909120 hasAuthorship W4220909120A5022383034 @default.
- W4220909120 hasAuthorship W4220909120A5041960464 @default.
- W4220909120 hasAuthorship W4220909120A5056023053 @default.
- W4220909120 hasAuthorship W4220909120A5080775919 @default.
- W4220909120 hasBestOaLocation W42209091201 @default.
- W4220909120 hasConcept C105795698 @default.
- W4220909120 hasConcept C106131492 @default.
- W4220909120 hasConcept C111368507 @default.
- W4220909120 hasConcept C125572338 @default.
- W4220909120 hasConcept C127313418 @default.
- W4220909120 hasConcept C140779682 @default.
- W4220909120 hasConcept C157518188 @default.
- W4220909120 hasConcept C18903297 @default.
- W4220909120 hasConcept C2776445371 @default.
- W4220909120 hasConcept C2780008901 @default.
- W4220909120 hasConcept C2909208804 @default.
- W4220909120 hasConcept C31972630 @default.
- W4220909120 hasConcept C33923547 @default.
- W4220909120 hasConcept C39432304 @default.
- W4220909120 hasConcept C41008148 @default.
- W4220909120 hasConcept C505870484 @default.
- W4220909120 hasConcept C77077793 @default.
- W4220909120 hasConcept C86803240 @default.
- W4220909120 hasConcept C88160329 @default.
- W4220909120 hasConcept C94747663 @default.
- W4220909120 hasConceptScore W4220909120C105795698 @default.
- W4220909120 hasConceptScore W4220909120C106131492 @default.
- W4220909120 hasConceptScore W4220909120C111368507 @default.
- W4220909120 hasConceptScore W4220909120C125572338 @default.
- W4220909120 hasConceptScore W4220909120C127313418 @default.
- W4220909120 hasConceptScore W4220909120C140779682 @default.
- W4220909120 hasConceptScore W4220909120C157518188 @default.
- W4220909120 hasConceptScore W4220909120C18903297 @default.
- W4220909120 hasConceptScore W4220909120C2776445371 @default.
- W4220909120 hasConceptScore W4220909120C2780008901 @default.
- W4220909120 hasConceptScore W4220909120C2909208804 @default.
- W4220909120 hasConceptScore W4220909120C31972630 @default.