Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220909832> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4220909832 abstract "In the era of society 5.0, information technology is growing rapidly, one of which is in the field of transportation. The phenomenon of online transportation services is becoming increasingly popular among the public. With this phenomenon, many people have an opinion about online transportation services, both positive and negative comments. The purpose of this study is to conduct sentiment analysis on online transportation service applications, namely reviews of users of the Gojek and Grab applications on the Google Play Store. This research uses the word2vec text embedding model and the support vector machine (SVM) algorithm. Word2vec is used as a feature extraction model as a representation of words into vector form. The architecture of the word2vec model used is the skip-gram model. The Support Vector Machine (SVM) algorithm is used for the data classification process to determine the level of accuracy of the data sentiment used. The results of the tests carried out on the classification of sentiment analysis on online transportation applications show that the performance results are quite good namely, the Gojek application gets a higher performance value with an accuracy value of 89%, precision of 94%, re-call of 86% and f1-score of 90%. Meanwhile, the Grab application has an accuracy value of 87%, a precision of 94%, a re-call of 85%, and an f1-score of 89%." @default.
- W4220909832 created "2022-04-03" @default.
- W4220909832 creator A5002112068 @default.
- W4220909832 creator A5011943288 @default.
- W4220909832 creator A5028981058 @default.
- W4220909832 creator A5029871032 @default.
- W4220909832 creator A5034962618 @default.
- W4220909832 creator A5091378592 @default.
- W4220909832 date "2022-01-29" @default.
- W4220909832 modified "2023-09-27" @default.
- W4220909832 title "Sentiment Analysis on Online Transportation Reviews Using Word2Vec Text Embedding Model Feature Extraction and Support Vector Machine (SVM) Algorithm" @default.
- W4220909832 cites W2077388991 @default.
- W4220909832 cites W2579963341 @default.
- W4220909832 cites W2762645278 @default.
- W4220909832 cites W2906079041 @default.
- W4220909832 cites W2964923236 @default.
- W4220909832 cites W2980508736 @default.
- W4220909832 cites W2985873309 @default.
- W4220909832 cites W3015408132 @default.
- W4220909832 cites W3019027838 @default.
- W4220909832 cites W3092569358 @default.
- W4220909832 cites W3123569252 @default.
- W4220909832 cites W3163479523 @default.
- W4220909832 cites W3196745710 @default.
- W4220909832 cites W3210709889 @default.
- W4220909832 cites W3215744982 @default.
- W4220909832 doi "https://doi.org/10.1109/ismode53584.2022.9742906" @default.
- W4220909832 hasPublicationYear "2022" @default.
- W4220909832 type Work @default.
- W4220909832 citedByCount "4" @default.
- W4220909832 countsByYear W42209098322022 @default.
- W4220909832 countsByYear W42209098322023 @default.
- W4220909832 crossrefType "proceedings-article" @default.
- W4220909832 hasAuthorship W4220909832A5002112068 @default.
- W4220909832 hasAuthorship W4220909832A5011943288 @default.
- W4220909832 hasAuthorship W4220909832A5028981058 @default.
- W4220909832 hasAuthorship W4220909832A5029871032 @default.
- W4220909832 hasAuthorship W4220909832A5034962618 @default.
- W4220909832 hasAuthorship W4220909832A5091378592 @default.
- W4220909832 hasConcept C110083411 @default.
- W4220909832 hasConcept C11413529 @default.
- W4220909832 hasConcept C119857082 @default.
- W4220909832 hasConcept C12267149 @default.
- W4220909832 hasConcept C124101348 @default.
- W4220909832 hasConcept C13672336 @default.
- W4220909832 hasConcept C154945302 @default.
- W4220909832 hasConcept C2776461190 @default.
- W4220909832 hasConcept C2777462759 @default.
- W4220909832 hasConcept C41008148 @default.
- W4220909832 hasConcept C41608201 @default.
- W4220909832 hasConcept C52622490 @default.
- W4220909832 hasConcept C66402592 @default.
- W4220909832 hasConceptScore W4220909832C110083411 @default.
- W4220909832 hasConceptScore W4220909832C11413529 @default.
- W4220909832 hasConceptScore W4220909832C119857082 @default.
- W4220909832 hasConceptScore W4220909832C12267149 @default.
- W4220909832 hasConceptScore W4220909832C124101348 @default.
- W4220909832 hasConceptScore W4220909832C13672336 @default.
- W4220909832 hasConceptScore W4220909832C154945302 @default.
- W4220909832 hasConceptScore W4220909832C2776461190 @default.
- W4220909832 hasConceptScore W4220909832C2777462759 @default.
- W4220909832 hasConceptScore W4220909832C41008148 @default.
- W4220909832 hasConceptScore W4220909832C41608201 @default.
- W4220909832 hasConceptScore W4220909832C52622490 @default.
- W4220909832 hasConceptScore W4220909832C66402592 @default.
- W4220909832 hasLocation W42209098321 @default.
- W4220909832 hasOpenAccess W4220909832 @default.
- W4220909832 hasPrimaryLocation W42209098321 @default.
- W4220909832 hasRelatedWork W2803710604 @default.
- W4220909832 hasRelatedWork W3034080962 @default.
- W4220909832 hasRelatedWork W3080191145 @default.
- W4220909832 hasRelatedWork W3133567596 @default.
- W4220909832 hasRelatedWork W3192849410 @default.
- W4220909832 hasRelatedWork W4211165872 @default.
- W4220909832 hasRelatedWork W4220909832 @default.
- W4220909832 hasRelatedWork W4226177105 @default.
- W4220909832 hasRelatedWork W4251594503 @default.
- W4220909832 hasRelatedWork W4307074408 @default.
- W4220909832 isParatext "false" @default.
- W4220909832 isRetracted "false" @default.
- W4220909832 workType "article" @default.