Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220912149> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4220912149 endingPage "e0264957" @default.
- W4220912149 startingPage "e0264957" @default.
- W4220912149 abstract "Physician stress is associated with near misses and adverse medical events. However, little is known about physiological mechanisms linking stress to such events. We explored the utility of machine learning to determine whether the catabolic stress hormone cortisol and the anabolic, anti-stress hormone dehydroepiandrosterone sulfate (DHEA-S), as well as the cortisol to DHEA-S ratio relate to near misses in emergency medicine residents during active duty in a trauma 1 emergency department. Compared to statistical models better suited for inference, machine learning models allow for prediction in situations that have not yet occurred, and thus better suited for clinical applications. This exploratory study used multiple machine learning models to determine possible relationships between biomarkers and near misses. Of the various models tested, support vector machine with radial bias function kernels and support vector machine with linear kernels performed the best, with training accuracies of 85% and 79% respectively. When evaluated on a test dataset, both models had prediction accuracies of around 80%. The pre-shift cortisol to DHEA-S ratio was shown to be the most important predictor in interpretable models tested. Results suggest that interventions that help emergency room physicians relax before they begin their shift could reduce risk of errors and improve patient and physician outcomes. This pilot demonstrates promising results regarding using machine learning to better understand the stress biology of near misses. Future studies should use larger groups and relate these variables to information in electronic medical records, such as objective and patient-reported quality measures." @default.
- W4220912149 created "2022-04-03" @default.
- W4220912149 creator A5080640781 @default.
- W4220912149 creator A5084852835 @default.
- W4220912149 creator A5085108165 @default.
- W4220912149 date "2022-03-08" @default.
- W4220912149 modified "2023-09-26" @default.
- W4220912149 title "Applying machine learning to explore the association between biological stress and near misses in emergency medicine residents" @default.
- W4220912149 cites W1651586605 @default.
- W4220912149 cites W1773909344 @default.
- W4220912149 cites W1951342611 @default.
- W4220912149 cites W1965730021 @default.
- W4220912149 cites W1975379468 @default.
- W4220912149 cites W1980747964 @default.
- W4220912149 cites W1981299610 @default.
- W4220912149 cites W1999981983 @default.
- W4220912149 cites W2026791237 @default.
- W4220912149 cites W2092081828 @default.
- W4220912149 cites W2111547563 @default.
- W4220912149 cites W2121348616 @default.
- W4220912149 cites W2137676379 @default.
- W4220912149 cites W2170379523 @default.
- W4220912149 cites W2177870565 @default.
- W4220912149 cites W2323376099 @default.
- W4220912149 cites W2536120357 @default.
- W4220912149 cites W2564321869 @default.
- W4220912149 cites W2588284258 @default.
- W4220912149 cites W2745692438 @default.
- W4220912149 cites W2765531049 @default.
- W4220912149 cites W2789303506 @default.
- W4220912149 cites W2792919287 @default.
- W4220912149 cites W2889488196 @default.
- W4220912149 cites W2890627641 @default.
- W4220912149 cites W2896168438 @default.
- W4220912149 cites W2933453616 @default.
- W4220912149 cites W2944406508 @default.
- W4220912149 cites W2996397878 @default.
- W4220912149 cites W3005227335 @default.
- W4220912149 cites W3083702094 @default.
- W4220912149 cites W3133057483 @default.
- W4220912149 cites W3153905165 @default.
- W4220912149 cites W3157307328 @default.
- W4220912149 doi "https://doi.org/10.1371/journal.pone.0264957" @default.
- W4220912149 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35259166" @default.
- W4220912149 hasPublicationYear "2022" @default.
- W4220912149 type Work @default.
- W4220912149 citedByCount "1" @default.
- W4220912149 countsByYear W42209121492022 @default.
- W4220912149 crossrefType "journal-article" @default.
- W4220912149 hasAuthorship W4220912149A5080640781 @default.
- W4220912149 hasAuthorship W4220912149A5084852835 @default.
- W4220912149 hasAuthorship W4220912149A5085108165 @default.
- W4220912149 hasBestOaLocation W42209121491 @default.
- W4220912149 hasConcept C118552586 @default.
- W4220912149 hasConcept C119857082 @default.
- W4220912149 hasConcept C12267149 @default.
- W4220912149 hasConcept C142724271 @default.
- W4220912149 hasConcept C154945302 @default.
- W4220912149 hasConcept C158600405 @default.
- W4220912149 hasConcept C2780724011 @default.
- W4220912149 hasConcept C41008148 @default.
- W4220912149 hasConcept C71924100 @default.
- W4220912149 hasConceptScore W4220912149C118552586 @default.
- W4220912149 hasConceptScore W4220912149C119857082 @default.
- W4220912149 hasConceptScore W4220912149C12267149 @default.
- W4220912149 hasConceptScore W4220912149C142724271 @default.
- W4220912149 hasConceptScore W4220912149C154945302 @default.
- W4220912149 hasConceptScore W4220912149C158600405 @default.
- W4220912149 hasConceptScore W4220912149C2780724011 @default.
- W4220912149 hasConceptScore W4220912149C41008148 @default.
- W4220912149 hasConceptScore W4220912149C71924100 @default.
- W4220912149 hasFunder F4320306628 @default.
- W4220912149 hasIssue "3" @default.
- W4220912149 hasLocation W42209121491 @default.
- W4220912149 hasLocation W42209121492 @default.
- W4220912149 hasLocation W42209121493 @default.
- W4220912149 hasLocation W42209121494 @default.
- W4220912149 hasLocation W42209121495 @default.
- W4220912149 hasOpenAccess W4220912149 @default.
- W4220912149 hasPrimaryLocation W42209121491 @default.
- W4220912149 hasRelatedWork W1996541855 @default.
- W4220912149 hasRelatedWork W2026095104 @default.
- W4220912149 hasRelatedWork W2355927362 @default.
- W4220912149 hasRelatedWork W2510700473 @default.
- W4220912149 hasRelatedWork W2748952813 @default.
- W4220912149 hasRelatedWork W2899084033 @default.
- W4220912149 hasRelatedWork W2961085424 @default.
- W4220912149 hasRelatedWork W3195168932 @default.
- W4220912149 hasRelatedWork W4238308949 @default.
- W4220912149 hasRelatedWork W4306674287 @default.
- W4220912149 hasVolume "17" @default.
- W4220912149 isParatext "false" @default.
- W4220912149 isRetracted "false" @default.
- W4220912149 workType "article" @default.