Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220913575> ?p ?o ?g. }
- W4220913575 endingPage "e913" @default.
- W4220913575 startingPage "e913" @default.
- W4220913575 abstract "Detecting negation and uncertainty is crucial for medical text mining applications; otherwise, extracted information can be incorrectly identified as real or factual events. Although several approaches have been proposed to detect negation and uncertainty in clinical texts, most efforts have focused on the English language. Most proposals developed for Spanish have focused mainly on negation detection and do not deal with uncertainty. In this paper, we propose a deep learning-based approach for both negation and uncertainty detection in clinical texts written in Spanish. The proposed approach explores two deep learning methods to achieve this goal: (i) Bidirectional Long-Short Term Memory with a Conditional Random Field layer (BiLSTM-CRF) and (ii) Bidirectional Encoder Representation for Transformers (BERT). The approach was evaluated using NUBES and IULA, two public corpora for the Spanish language. The results obtained showed an F-score of 92% and 80% in the scope recognition task for negation and uncertainty, respectively. We also present the results of a validation process conducted using a real-life annotated dataset from clinical notes belonging to cancer patients. The proposed approach shows the feasibility of deep learning-based methods to detect negation and uncertainty in Spanish clinical texts. Experiments also highlighted that this approach improves performance in the scope recognition task compared to other proposals in the biomedical domain." @default.
- W4220913575 created "2022-04-03" @default.
- W4220913575 creator A5008927068 @default.
- W4220913575 creator A5013323586 @default.
- W4220913575 creator A5022128151 @default.
- W4220913575 creator A5055766625 @default.
- W4220913575 creator A5085499011 @default.
- W4220913575 creator A5089559663 @default.
- W4220913575 date "2022-03-07" @default.
- W4220913575 modified "2023-10-18" @default.
- W4220913575 title "Negation and uncertainty detection in clinical texts written in Spanish: a deep learning-based approach" @default.
- W4220913575 cites W1024674079 @default.
- W4220913575 cites W163954374 @default.
- W4220913575 cites W1894439495 @default.
- W4220913575 cites W1922167300 @default.
- W4220913575 cites W1964625659 @default.
- W4220913575 cites W1982464493 @default.
- W4220913575 cites W1990435674 @default.
- W4220913575 cites W1995151442 @default.
- W4220913575 cites W2005853109 @default.
- W4220913575 cites W2006587457 @default.
- W4220913575 cites W2015138273 @default.
- W4220913575 cites W2053154970 @default.
- W4220913575 cites W2064362294 @default.
- W4220913575 cites W2078920669 @default.
- W4220913575 cites W2115915625 @default.
- W4220913575 cites W2123564229 @default.
- W4220913575 cites W2125117006 @default.
- W4220913575 cites W2139865360 @default.
- W4220913575 cites W2152913516 @default.
- W4220913575 cites W2168041406 @default.
- W4220913575 cites W2252100726 @default.
- W4220913575 cites W2279992407 @default.
- W4220913575 cites W2296283641 @default.
- W4220913575 cites W2320439198 @default.
- W4220913575 cites W2476302291 @default.
- W4220913575 cites W2493916176 @default.
- W4220913575 cites W2510356291 @default.
- W4220913575 cites W2566847560 @default.
- W4220913575 cites W2579589574 @default.
- W4220913575 cites W2604952253 @default.
- W4220913575 cites W2618063915 @default.
- W4220913575 cites W2624750191 @default.
- W4220913575 cites W2740783897 @default.
- W4220913575 cites W2758245304 @default.
- W4220913575 cites W2793146294 @default.
- W4220913575 cites W2803437104 @default.
- W4220913575 cites W2805211535 @default.
- W4220913575 cites W2901413829 @default.
- W4220913575 cites W2911321984 @default.
- W4220913575 cites W2911489562 @default.
- W4220913575 cites W2942354996 @default.
- W4220913575 cites W2948790008 @default.
- W4220913575 cites W2950021574 @default.
- W4220913575 cites W2952638691 @default.
- W4220913575 cites W2955109214 @default.
- W4220913575 cites W2962739339 @default.
- W4220913575 cites W2963373823 @default.
- W4220913575 cites W2963923670 @default.
- W4220913575 cites W2963997788 @default.
- W4220913575 cites W2975195127 @default.
- W4220913575 cites W2997734032 @default.
- W4220913575 cites W3016682305 @default.
- W4220913575 cites W3021110742 @default.
- W4220913575 cites W3042081424 @default.
- W4220913575 cites W3096437212 @default.
- W4220913575 cites W3096461368 @default.
- W4220913575 cites W3125137681 @default.
- W4220913575 cites W3130583616 @default.
- W4220913575 cites W4210984920 @default.
- W4220913575 cites W4211215609 @default.
- W4220913575 cites W4212881197 @default.
- W4220913575 cites W4234683186 @default.
- W4220913575 cites W79139011 @default.
- W4220913575 doi "https://doi.org/10.7717/peerj-cs.913" @default.
- W4220913575 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35494817" @default.
- W4220913575 hasPublicationYear "2022" @default.
- W4220913575 type Work @default.
- W4220913575 citedByCount "10" @default.
- W4220913575 countsByYear W42209135752022 @default.
- W4220913575 countsByYear W42209135752023 @default.
- W4220913575 crossrefType "journal-article" @default.
- W4220913575 hasAuthorship W4220913575A5008927068 @default.
- W4220913575 hasAuthorship W4220913575A5013323586 @default.
- W4220913575 hasAuthorship W4220913575A5022128151 @default.
- W4220913575 hasAuthorship W4220913575A5055766625 @default.
- W4220913575 hasAuthorship W4220913575A5085499011 @default.
- W4220913575 hasAuthorship W4220913575A5089559663 @default.
- W4220913575 hasBestOaLocation W42209135751 @default.
- W4220913575 hasConcept C108583219 @default.
- W4220913575 hasConcept C119857082 @default.
- W4220913575 hasConcept C121332964 @default.
- W4220913575 hasConcept C152565575 @default.
- W4220913575 hasConcept C154945302 @default.
- W4220913575 hasConcept C162324750 @default.
- W4220913575 hasConcept C165801399 @default.
- W4220913575 hasConcept C187736073 @default.
- W4220913575 hasConcept C199360897 @default.