Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220916830> ?p ?o ?g. }
- W4220916830 endingPage "9" @default.
- W4220916830 startingPage "1" @default.
- W4220916830 abstract "Social media networking is a prominent topic in real life, particularly at the current moment. The impact of comments has been investigated in several studies. Twitter, Facebook, and Instagram are just a few of the social media networks that are used to broadcast different news worldwide. In this paper, a comprehensive AI-based study is presented to automatically detect the Arabic text misogyny and sarcasm in binary and multiclass scenarios. The key of the proposed AI approach is to distinguish various topics of misogyny and sarcasm from Arabic tweets in social media networks. A comprehensive study is achieved for detecting both misogyny and sarcasm via adopting seven state-of-the-art NLP classifiers: ARABERT, PAC, LRC, RFC, LSVC, DTC, and KNNC. To fine tune, validate, and evaluate all of these techniques, two Arabic tweets datasets (i.e., misogyny and Abu Farah datasets) are used. For the experimental study, two scenarios are proposed for each case study (misogyny or sarcasm): binary and multiclass problems. For misogyny detection, the best accuracy is achieved using the AraBERT classifier with 91.0% for binary classification scenario and 89.0% for the multiclass scenario. For sarcasm detection, the best accuracy is achieved using the AraBERT as well with 88% for binary classification scenario and 77.0% for the multiclass scenario. The proposed method appears to be effective in detecting misogyny and sarcasm in social media platforms with suggesting AraBERT as a superior state-of-the-art deep learning classifier." @default.
- W4220916830 created "2022-04-03" @default.
- W4220916830 creator A5001918184 @default.
- W4220916830 creator A5005785792 @default.
- W4220916830 creator A5022092645 @default.
- W4220916830 creator A5022154403 @default.
- W4220916830 creator A5024221458 @default.
- W4220916830 creator A5037355389 @default.
- W4220916830 creator A5053263315 @default.
- W4220916830 creator A5080314051 @default.
- W4220916830 date "2022-03-26" @default.
- W4220916830 modified "2023-10-18" @default.
- W4220916830 title "Artificial Intelligence-Based Approach for Misogyny and Sarcasm Detection from Arabic Texts" @default.
- W4220916830 cites W2793956967 @default.
- W4220916830 cites W2803575519 @default.
- W4220916830 cites W2809504579 @default.
- W4220916830 cites W2894812750 @default.
- W4220916830 cites W2898401058 @default.
- W4220916830 cites W2977485612 @default.
- W4220916830 cites W3018324503 @default.
- W4220916830 cites W3033750579 @default.
- W4220916830 cites W3095278059 @default.
- W4220916830 cites W3101553132 @default.
- W4220916830 cites W3101559459 @default.
- W4220916830 cites W3106580412 @default.
- W4220916830 cites W3110602624 @default.
- W4220916830 cites W3154480178 @default.
- W4220916830 cites W3154741768 @default.
- W4220916830 cites W3165059968 @default.
- W4220916830 cites W3177713290 @default.
- W4220916830 cites W3186641415 @default.
- W4220916830 cites W4205232642 @default.
- W4220916830 cites W4206593922 @default.
- W4220916830 cites W4211260480 @default.
- W4220916830 cites W4214815834 @default.
- W4220916830 cites W4287285119 @default.
- W4220916830 cites W4375949347 @default.
- W4220916830 doi "https://doi.org/10.1155/2022/7937667" @default.
- W4220916830 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35378816" @default.
- W4220916830 hasPublicationYear "2022" @default.
- W4220916830 type Work @default.
- W4220916830 citedByCount "13" @default.
- W4220916830 countsByYear W42209168302022 @default.
- W4220916830 countsByYear W42209168302023 @default.
- W4220916830 crossrefType "journal-article" @default.
- W4220916830 hasAuthorship W4220916830A5001918184 @default.
- W4220916830 hasAuthorship W4220916830A5005785792 @default.
- W4220916830 hasAuthorship W4220916830A5022092645 @default.
- W4220916830 hasAuthorship W4220916830A5022154403 @default.
- W4220916830 hasAuthorship W4220916830A5024221458 @default.
- W4220916830 hasAuthorship W4220916830A5037355389 @default.
- W4220916830 hasAuthorship W4220916830A5053263315 @default.
- W4220916830 hasAuthorship W4220916830A5080314051 @default.
- W4220916830 hasBestOaLocation W42209168301 @default.
- W4220916830 hasConcept C119857082 @default.
- W4220916830 hasConcept C12267149 @default.
- W4220916830 hasConcept C136764020 @default.
- W4220916830 hasConcept C138885662 @default.
- W4220916830 hasConcept C154945302 @default.
- W4220916830 hasConcept C204321447 @default.
- W4220916830 hasConcept C2776207355 @default.
- W4220916830 hasConcept C2779975665 @default.
- W4220916830 hasConcept C33923547 @default.
- W4220916830 hasConcept C41008148 @default.
- W4220916830 hasConcept C41895202 @default.
- W4220916830 hasConcept C48372109 @default.
- W4220916830 hasConcept C518677369 @default.
- W4220916830 hasConcept C66905080 @default.
- W4220916830 hasConcept C94375191 @default.
- W4220916830 hasConcept C95623464 @default.
- W4220916830 hasConcept C96455323 @default.
- W4220916830 hasConceptScore W4220916830C119857082 @default.
- W4220916830 hasConceptScore W4220916830C12267149 @default.
- W4220916830 hasConceptScore W4220916830C136764020 @default.
- W4220916830 hasConceptScore W4220916830C138885662 @default.
- W4220916830 hasConceptScore W4220916830C154945302 @default.
- W4220916830 hasConceptScore W4220916830C204321447 @default.
- W4220916830 hasConceptScore W4220916830C2776207355 @default.
- W4220916830 hasConceptScore W4220916830C2779975665 @default.
- W4220916830 hasConceptScore W4220916830C33923547 @default.
- W4220916830 hasConceptScore W4220916830C41008148 @default.
- W4220916830 hasConceptScore W4220916830C41895202 @default.
- W4220916830 hasConceptScore W4220916830C48372109 @default.
- W4220916830 hasConceptScore W4220916830C518677369 @default.
- W4220916830 hasConceptScore W4220916830C66905080 @default.
- W4220916830 hasConceptScore W4220916830C94375191 @default.
- W4220916830 hasConceptScore W4220916830C95623464 @default.
- W4220916830 hasConceptScore W4220916830C96455323 @default.
- W4220916830 hasFunder F4320321145 @default.
- W4220916830 hasLocation W42209168301 @default.
- W4220916830 hasLocation W42209168302 @default.
- W4220916830 hasLocation W42209168303 @default.
- W4220916830 hasLocation W42209168304 @default.
- W4220916830 hasOpenAccess W4220916830 @default.
- W4220916830 hasPrimaryLocation W42209168301 @default.
- W4220916830 hasRelatedWork W2556319748 @default.
- W4220916830 hasRelatedWork W2807333695 @default.
- W4220916830 hasRelatedWork W2888934269 @default.