Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220917838> ?p ?o ?g. }
- W4220917838 endingPage "4098" @default.
- W4220917838 startingPage "4098" @default.
- W4220917838 abstract "Real-time control of wastewater treatment plants (WWTPs) can have significant environmental and cost advantages. However, its application to small and decentralised WWTPs, which typically have highly varying influent characteristics, remains limited to date due to cost, reliability and technical restrictions. In this study, a methodology was developed using numerical models that can improve sustainability, in real time, by enhancing wastewater treatment whilst also optimising operational and energy efficiency. The methodology leverages neural network and regression modelling to determine a suitable soft sensor for the prediction of ammonium-nitrogen trends. This study is based on a case-study decentralised WWTP employing sequencing batch reactor (SBR) treatment and uses pH and oxidation-reduction potential sensors as proxies for ammonium-nitrogen sensors. In the proposed method, data were pre-processed into 15 input variables and analysed using multi-layer neural network (MLNN) and regression models, creating 176 soft sensors. Each soft sensor was then analysed and ranked to determine the most suitable soft sensor for the WWTP. It was determined that the most suitable soft sensor for this WWTP would achieve a 67% cycle-time saving and 51% electricity saving for each treatment cycle while meeting the criteria set for ammonium discharges. This proposed soft sensor selection methodology can be applied, in full or in part, to existing or new WWTPs, potentially increasing the adoption of real-time control technologies, thus enhancing their overall effluent quality and energy performance." @default.
- W4220917838 created "2022-04-03" @default.
- W4220917838 creator A5008823086 @default.
- W4220917838 creator A5028919082 @default.
- W4220917838 creator A5067381332 @default.
- W4220917838 creator A5075291430 @default.
- W4220917838 creator A5087317472 @default.
- W4220917838 date "2022-03-30" @default.
- W4220917838 modified "2023-09-30" @default.
- W4220917838 title "Application of Neural Networks and Regression Modelling to Enable Environmental Regulatory Compliance and Energy Optimisation in a Sequencing Batch Reactor" @default.
- W4220917838 cites W1571134119 @default.
- W4220917838 cites W1964318466 @default.
- W4220917838 cites W1972885193 @default.
- W4220917838 cites W1975408053 @default.
- W4220917838 cites W1977526056 @default.
- W4220917838 cites W1980210795 @default.
- W4220917838 cites W1983729077 @default.
- W4220917838 cites W1988463914 @default.
- W4220917838 cites W1989275221 @default.
- W4220917838 cites W2003172973 @default.
- W4220917838 cites W2005747180 @default.
- W4220917838 cites W2006750137 @default.
- W4220917838 cites W2007322946 @default.
- W4220917838 cites W2015107988 @default.
- W4220917838 cites W2015645066 @default.
- W4220917838 cites W2022010974 @default.
- W4220917838 cites W2025247924 @default.
- W4220917838 cites W2035438910 @default.
- W4220917838 cites W2048113012 @default.
- W4220917838 cites W2059056735 @default.
- W4220917838 cites W2065584454 @default.
- W4220917838 cites W2070595069 @default.
- W4220917838 cites W2075103250 @default.
- W4220917838 cites W2077323522 @default.
- W4220917838 cites W2093411480 @default.
- W4220917838 cites W2093584539 @default.
- W4220917838 cites W2109574129 @default.
- W4220917838 cites W2119960866 @default.
- W4220917838 cites W2123442751 @default.
- W4220917838 cites W2124783673 @default.
- W4220917838 cites W2155482699 @default.
- W4220917838 cites W2192549260 @default.
- W4220917838 cites W2201252546 @default.
- W4220917838 cites W2263928265 @default.
- W4220917838 cites W2311654268 @default.
- W4220917838 cites W2401578202 @default.
- W4220917838 cites W2460943568 @default.
- W4220917838 cites W2467307864 @default.
- W4220917838 cites W2519842606 @default.
- W4220917838 cites W2783181589 @default.
- W4220917838 cites W2902310626 @default.
- W4220917838 cites W2911546748 @default.
- W4220917838 cites W3022766640 @default.
- W4220917838 cites W3036313208 @default.
- W4220917838 cites W3040508291 @default.
- W4220917838 cites W3048973568 @default.
- W4220917838 cites W3077459578 @default.
- W4220917838 cites W3089375343 @default.
- W4220917838 cites W3097789521 @default.
- W4220917838 cites W3100711616 @default.
- W4220917838 cites W3135556490 @default.
- W4220917838 cites W3175788707 @default.
- W4220917838 cites W3177929127 @default.
- W4220917838 cites W3208791833 @default.
- W4220917838 cites W4206344210 @default.
- W4220917838 cites W4234128807 @default.
- W4220917838 cites W4249240618 @default.
- W4220917838 doi "https://doi.org/10.3390/su14074098" @default.
- W4220917838 hasPublicationYear "2022" @default.
- W4220917838 type Work @default.
- W4220917838 citedByCount "3" @default.
- W4220917838 countsByYear W42209178382022 @default.
- W4220917838 countsByYear W42209178382023 @default.
- W4220917838 crossrefType "journal-article" @default.
- W4220917838 hasAuthorship W4220917838A5008823086 @default.
- W4220917838 hasAuthorship W4220917838A5028919082 @default.
- W4220917838 hasAuthorship W4220917838A5067381332 @default.
- W4220917838 hasAuthorship W4220917838A5075291430 @default.
- W4220917838 hasAuthorship W4220917838A5087317472 @default.
- W4220917838 hasBestOaLocation W42209178381 @default.
- W4220917838 hasConcept C111919701 @default.
- W4220917838 hasConcept C115575686 @default.
- W4220917838 hasConcept C119857082 @default.
- W4220917838 hasConcept C121332964 @default.
- W4220917838 hasConcept C127413603 @default.
- W4220917838 hasConcept C163258240 @default.
- W4220917838 hasConcept C18903297 @default.
- W4220917838 hasConcept C21880701 @default.
- W4220917838 hasConcept C2780355613 @default.
- W4220917838 hasConcept C41008148 @default.
- W4220917838 hasConcept C43214815 @default.
- W4220917838 hasConcept C50644808 @default.
- W4220917838 hasConcept C57442070 @default.
- W4220917838 hasConcept C62520636 @default.
- W4220917838 hasConcept C66204764 @default.
- W4220917838 hasConcept C86803240 @default.
- W4220917838 hasConcept C87717796 @default.
- W4220917838 hasConcept C98045186 @default.