Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220921429> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4220921429 abstract "Abstract Providing access to underground energy resources such as oil, gas, and geothermal energy requires drilling through subterranean rock formations. Drilling fluids are commonly used to enable this drilling process by serving a variety of functions. Chief among these is circulating into the drilled wellbore to remove the produced rock cuttings. Other functions include exerting the hydrostatic pressure necessary to prevent the flow of underground fluids into the wellbore while drilling, minimizing the invasion of solids and undesired fluids into the wellbore rock, and ensuring the fluid remains flowable within the means of the pumps available on site. To assess the ability of a drilling fluid to serve these functions, it has to have certain rheological properties, which are conventionally measured using specialized equipment. Considering that the formulation and components of these drilling fluids can vary greatly for different scenarios, the process of preparing samples and measuring their rheological properties, which is usually performed on a daily basis on a drilling site, is unavoidably time-consuming, repetitive, and error-prone. Based on this, it is apparent that there is a need for a computational model that can accurately predict drilling fluids properties based on the proposed concentration of their components without the need for further laboratory testing. This study describes a novel methodology to train a machine learning model derived from over 6,878 drilling fluid formulations to successfully predict water-based drilling fluids properties with a resulting R 2 of 91.07 ± 6.35%." @default.
- W4220921429 created "2022-04-03" @default.
- W4220921429 creator A5020891409 @default.
- W4220921429 creator A5080847029 @default.
- W4220921429 creator A5087850789 @default.
- W4220921429 creator A5089089806 @default.
- W4220921429 date "2022-03-07" @default.
- W4220921429 modified "2023-10-16" @default.
- W4220921429 title "Drilling Fluid Properties Prediction: A Machine Learning Approach to Automate Laboratory Experiments" @default.
- W4220921429 doi "https://doi.org/10.21203/rs.3.rs-1407939/v1" @default.
- W4220921429 hasPublicationYear "2022" @default.
- W4220921429 type Work @default.
- W4220921429 citedByCount "0" @default.
- W4220921429 crossrefType "posted-content" @default.
- W4220921429 hasAuthorship W4220921429A5020891409 @default.
- W4220921429 hasAuthorship W4220921429A5080847029 @default.
- W4220921429 hasAuthorship W4220921429A5087850789 @default.
- W4220921429 hasAuthorship W4220921429A5089089806 @default.
- W4220921429 hasBestOaLocation W42209214291 @default.
- W4220921429 hasConcept C111766609 @default.
- W4220921429 hasConcept C111919701 @default.
- W4220921429 hasConcept C127313418 @default.
- W4220921429 hasConcept C127413603 @default.
- W4220921429 hasConcept C152068911 @default.
- W4220921429 hasConcept C159985019 @default.
- W4220921429 hasConcept C192562407 @default.
- W4220921429 hasConcept C200990466 @default.
- W4220921429 hasConcept C25197100 @default.
- W4220921429 hasConcept C41008148 @default.
- W4220921429 hasConcept C42222113 @default.
- W4220921429 hasConcept C58059514 @default.
- W4220921429 hasConcept C78519656 @default.
- W4220921429 hasConcept C78762247 @default.
- W4220921429 hasConcept C8058405 @default.
- W4220921429 hasConcept C9677107 @default.
- W4220921429 hasConcept C98045186 @default.
- W4220921429 hasConceptScore W4220921429C111766609 @default.
- W4220921429 hasConceptScore W4220921429C111919701 @default.
- W4220921429 hasConceptScore W4220921429C127313418 @default.
- W4220921429 hasConceptScore W4220921429C127413603 @default.
- W4220921429 hasConceptScore W4220921429C152068911 @default.
- W4220921429 hasConceptScore W4220921429C159985019 @default.
- W4220921429 hasConceptScore W4220921429C192562407 @default.
- W4220921429 hasConceptScore W4220921429C200990466 @default.
- W4220921429 hasConceptScore W4220921429C25197100 @default.
- W4220921429 hasConceptScore W4220921429C41008148 @default.
- W4220921429 hasConceptScore W4220921429C42222113 @default.
- W4220921429 hasConceptScore W4220921429C58059514 @default.
- W4220921429 hasConceptScore W4220921429C78519656 @default.
- W4220921429 hasConceptScore W4220921429C78762247 @default.
- W4220921429 hasConceptScore W4220921429C8058405 @default.
- W4220921429 hasConceptScore W4220921429C9677107 @default.
- W4220921429 hasConceptScore W4220921429C98045186 @default.
- W4220921429 hasLocation W42209214291 @default.
- W4220921429 hasOpenAccess W4220921429 @default.
- W4220921429 hasPrimaryLocation W42209214291 @default.
- W4220921429 hasRelatedWork W2089328180 @default.
- W4220921429 hasRelatedWork W2183407695 @default.
- W4220921429 hasRelatedWork W2360888673 @default.
- W4220921429 hasRelatedWork W2361758212 @default.
- W4220921429 hasRelatedWork W2376702109 @default.
- W4220921429 hasRelatedWork W2378457812 @default.
- W4220921429 hasRelatedWork W2482186248 @default.
- W4220921429 hasRelatedWork W2889691385 @default.
- W4220921429 hasRelatedWork W3131773201 @default.
- W4220921429 hasRelatedWork W4250005935 @default.
- W4220921429 isParatext "false" @default.
- W4220921429 isRetracted "false" @default.
- W4220921429 workType "article" @default.