Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220921471> ?p ?o ?g. }
Showing items 1 to 48 of
48
with 100 items per page.
- W4220921471 abstract "<p>Aerosol chemical composition is an important driver for hygroscopic growth and hence cloud activation. A major fraction of the aerosol consists of inorganic components, for which thermodynamic equilibrium models are commonly used to describe the chemical composition, including total water uptake.<br>However, these thermodynamics are relatively computationally expensive calculations, minimising the Gibbs free energy of the total system. Consequently, faster computations are desirable, which can be facilitated using machine learning techniques.</p><p>In this study, we apply neuronal networks, being trained on the output of an equilibrium thermodynamics model (ISORROPIA 2), to represent both the chemical composition and associated aerosol water uptake. We investigate the quality of the trained network against independent data from the equilibrium model and find a good agreement of the trained network model against the original data. Furthermore, we also test the applicability of the trained model in a parameter space outside of the trained data set to analyse whether the trained network is able to properly represent the physico-chemical system, and hence a suitable replacement of the equilibrium model by a neuronal network is appropriate.</p>" @default.
- W4220921471 created "2022-04-03" @default.
- W4220921471 creator A5012769954 @default.
- W4220921471 creator A5072453034 @default.
- W4220921471 date "2022-03-27" @default.
- W4220921471 modified "2023-09-30" @default.
- W4220921471 title "Aerosol Thermodynamics using Machine Learning" @default.
- W4220921471 doi "https://doi.org/10.5194/egusphere-egu22-5208" @default.
- W4220921471 hasPublicationYear "2022" @default.
- W4220921471 type Work @default.
- W4220921471 citedByCount "0" @default.
- W4220921471 crossrefType "posted-content" @default.
- W4220921471 hasAuthorship W4220921471A5012769954 @default.
- W4220921471 hasAuthorship W4220921471A5072453034 @default.
- W4220921471 hasConcept C121332964 @default.
- W4220921471 hasConcept C146477669 @default.
- W4220921471 hasConcept C149629883 @default.
- W4220921471 hasConcept C153294291 @default.
- W4220921471 hasConcept C185592680 @default.
- W4220921471 hasConcept C2779345167 @default.
- W4220921471 hasConcept C43617362 @default.
- W4220921471 hasConcept C73051877 @default.
- W4220921471 hasConcept C97355855 @default.
- W4220921471 hasConceptScore W4220921471C121332964 @default.
- W4220921471 hasConceptScore W4220921471C146477669 @default.
- W4220921471 hasConceptScore W4220921471C149629883 @default.
- W4220921471 hasConceptScore W4220921471C153294291 @default.
- W4220921471 hasConceptScore W4220921471C185592680 @default.
- W4220921471 hasConceptScore W4220921471C2779345167 @default.
- W4220921471 hasConceptScore W4220921471C43617362 @default.
- W4220921471 hasConceptScore W4220921471C73051877 @default.
- W4220921471 hasConceptScore W4220921471C97355855 @default.
- W4220921471 hasLocation W42209214711 @default.
- W4220921471 hasOpenAccess W4220921471 @default.
- W4220921471 hasPrimaryLocation W42209214711 @default.
- W4220921471 hasRelatedWork W1572121406 @default.
- W4220921471 hasRelatedWork W169776233 @default.
- W4220921471 hasRelatedWork W2028305387 @default.
- W4220921471 hasRelatedWork W2058864653 @default.
- W4220921471 hasRelatedWork W2323190914 @default.
- W4220921471 hasRelatedWork W2551182266 @default.
- W4220921471 hasRelatedWork W2597946430 @default.
- W4220921471 hasRelatedWork W2888646013 @default.
- W4220921471 hasRelatedWork W2998851779 @default.
- W4220921471 hasRelatedWork W3155684047 @default.
- W4220921471 isParatext "false" @default.
- W4220921471 isRetracted "false" @default.
- W4220921471 workType "article" @default.