Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220921579> ?p ?o ?g. }
- W4220921579 endingPage "100633" @default.
- W4220921579 startingPage "100633" @default.
- W4220921579 abstract "The probing noise is essential to obtain the persistence of excitation condition for solving Bellman equations in optimal control problems based on reinforcement learning. However, the level of probing noise affects the system state and the input control signal. The Bellman equation solution can be obtained using the classical adaptive filtering algorithms, namely, normalized least-mean-square (NLMS) and recursive-least-squares (RLS); thus, taking into account this kind of solution, in this paper, we present an analysis on the effect of probing noise in the state and input of the dynamic system, considering the linear quadratic regulator (LQR) problem using Q-learning policy iteration. In our analysis, a closed formula for the autocovariance matrices of the system state and the input are obtained, showing that their norms are proportional to the variance of the probing noise during the learning process. Numerical experiments show the performance of Q-learning policy iteration method based on NLMS and RLS for different variances of probing noise." @default.
- W4220921579 created "2022-04-03" @default.
- W4220921579 creator A5018692195 @default.
- W4220921579 creator A5079039339 @default.
- W4220921579 date "2022-03-01" @default.
- W4220921579 modified "2023-09-26" @default.
- W4220921579 title "On the effect of probing noise in optimal control LQR via Q-learning using adaptive filtering algorithms" @default.
- W4220921579 cites W1538424073 @default.
- W4220921579 cites W1977655452 @default.
- W4220921579 cites W1998922549 @default.
- W4220921579 cites W2001976066 @default.
- W4220921579 cites W2005437559 @default.
- W4220921579 cites W2011866373 @default.
- W4220921579 cites W2044922360 @default.
- W4220921579 cites W2070569478 @default.
- W4220921579 cites W2133101712 @default.
- W4220921579 cites W2151966330 @default.
- W4220921579 cites W2152161277 @default.
- W4220921579 cites W2165726932 @default.
- W4220921579 cites W2166938486 @default.
- W4220921579 cites W2580629550 @default.
- W4220921579 cites W2772589676 @default.
- W4220921579 cites W2784092749 @default.
- W4220921579 cites W2897702175 @default.
- W4220921579 cites W2917089854 @default.
- W4220921579 cites W2918463777 @default.
- W4220921579 cites W2936556294 @default.
- W4220921579 cites W2943141190 @default.
- W4220921579 cites W2945875572 @default.
- W4220921579 cites W2949081101 @default.
- W4220921579 cites W2997938989 @default.
- W4220921579 cites W3011697356 @default.
- W4220921579 cites W3012156918 @default.
- W4220921579 cites W3041202696 @default.
- W4220921579 cites W3195322794 @default.
- W4220921579 cites W3203618099 @default.
- W4220921579 cites W32403112 @default.
- W4220921579 doi "https://doi.org/10.1016/j.ejcon.2022.100633" @default.
- W4220921579 hasPublicationYear "2022" @default.
- W4220921579 type Work @default.
- W4220921579 citedByCount "0" @default.
- W4220921579 crossrefType "journal-article" @default.
- W4220921579 hasAuthorship W4220921579A5018692195 @default.
- W4220921579 hasAuthorship W4220921579A5079039339 @default.
- W4220921579 hasConcept C102248274 @default.
- W4220921579 hasConcept C102519508 @default.
- W4220921579 hasConcept C107464732 @default.
- W4220921579 hasConcept C11413529 @default.
- W4220921579 hasConcept C115961682 @default.
- W4220921579 hasConcept C126255220 @default.
- W4220921579 hasConcept C134306372 @default.
- W4220921579 hasConcept C145249878 @default.
- W4220921579 hasConcept C154945302 @default.
- W4220921579 hasConcept C2775924081 @default.
- W4220921579 hasConcept C33923547 @default.
- W4220921579 hasConcept C41008148 @default.
- W4220921579 hasConcept C45473103 @default.
- W4220921579 hasConcept C47446073 @default.
- W4220921579 hasConcept C78045399 @default.
- W4220921579 hasConcept C88271906 @default.
- W4220921579 hasConcept C91575142 @default.
- W4220921579 hasConcept C97541855 @default.
- W4220921579 hasConcept C98779006 @default.
- W4220921579 hasConcept C99498987 @default.
- W4220921579 hasConceptScore W4220921579C102248274 @default.
- W4220921579 hasConceptScore W4220921579C102519508 @default.
- W4220921579 hasConceptScore W4220921579C107464732 @default.
- W4220921579 hasConceptScore W4220921579C11413529 @default.
- W4220921579 hasConceptScore W4220921579C115961682 @default.
- W4220921579 hasConceptScore W4220921579C126255220 @default.
- W4220921579 hasConceptScore W4220921579C134306372 @default.
- W4220921579 hasConceptScore W4220921579C145249878 @default.
- W4220921579 hasConceptScore W4220921579C154945302 @default.
- W4220921579 hasConceptScore W4220921579C2775924081 @default.
- W4220921579 hasConceptScore W4220921579C33923547 @default.
- W4220921579 hasConceptScore W4220921579C41008148 @default.
- W4220921579 hasConceptScore W4220921579C45473103 @default.
- W4220921579 hasConceptScore W4220921579C47446073 @default.
- W4220921579 hasConceptScore W4220921579C78045399 @default.
- W4220921579 hasConceptScore W4220921579C88271906 @default.
- W4220921579 hasConceptScore W4220921579C91575142 @default.
- W4220921579 hasConceptScore W4220921579C97541855 @default.
- W4220921579 hasConceptScore W4220921579C98779006 @default.
- W4220921579 hasConceptScore W4220921579C99498987 @default.
- W4220921579 hasLocation W42209215791 @default.
- W4220921579 hasOpenAccess W4220921579 @default.
- W4220921579 hasPrimaryLocation W42209215791 @default.
- W4220921579 hasRelatedWork W1583306100 @default.
- W4220921579 hasRelatedWork W2106103955 @default.
- W4220921579 hasRelatedWork W2373820626 @default.
- W4220921579 hasRelatedWork W2383875555 @default.
- W4220921579 hasRelatedWork W2502579370 @default.
- W4220921579 hasRelatedWork W2536563377 @default.
- W4220921579 hasRelatedWork W3045658577 @default.
- W4220921579 hasRelatedWork W3045695591 @default.
- W4220921579 hasRelatedWork W3049314573 @default.
- W4220921579 hasRelatedWork W3152048197 @default.
- W4220921579 isParatext "false" @default.