Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220921757> ?p ?o ?g. }
- W4220921757 endingPage "2734" @default.
- W4220921757 startingPage "2734" @default.
- W4220921757 abstract "The use of compressive sensing in several applications has allowed to capture impressive results, especially in various applications such as image and video processing and it has become a promising direction of scientific research. It provides extensive application value in optimizing video surveillance networks. In this paper, we introduce recent state-of-the-art video compressive sensing methods based on neural networks and categorize them into different categories. We compare these approaches by analyzing the networks architectures. Then, we present their pros and cons. The general conclusion of the paper identify open research challenges and point out future research directions. The goal of this paper is to overview the current approaches in image and video compressive sensing and demonstrate their powerful impact in computer vision when using well designed compressive sensing algorithms." @default.
- W4220921757 created "2022-04-03" @default.
- W4220921757 creator A5024490909 @default.
- W4220921757 creator A5026281704 @default.
- W4220921757 creator A5048786760 @default.
- W4220921757 creator A5069523250 @default.
- W4220921757 date "2022-03-07" @default.
- W4220921757 modified "2023-10-16" @default.
- W4220921757 title "An Overview on Deep Learning Techniques for Video Compressive Sensing" @default.
- W4220921757 cites W1758098838 @default.
- W4220921757 cites W1857867064 @default.
- W4220921757 cites W1879175581 @default.
- W4220921757 cites W1908963207 @default.
- W4220921757 cites W1974198688 @default.
- W4220921757 cites W1975622988 @default.
- W4220921757 cites W1983364832 @default.
- W4220921757 cites W1986701690 @default.
- W4220921757 cites W1986931325 @default.
- W4220921757 cites W2015418199 @default.
- W4220921757 cites W2028339660 @default.
- W4220921757 cites W2028349405 @default.
- W4220921757 cites W2046658845 @default.
- W4220921757 cites W2047942031 @default.
- W4220921757 cites W2064076387 @default.
- W4220921757 cites W2064675550 @default.
- W4220921757 cites W2082029531 @default.
- W4220921757 cites W2099100030 @default.
- W4220921757 cites W2109449402 @default.
- W4220921757 cites W2116148865 @default.
- W4220921757 cites W2122548617 @default.
- W4220921757 cites W2127271355 @default.
- W4220921757 cites W2135155393 @default.
- W4220921757 cites W2137198385 @default.
- W4220921757 cites W2142224912 @default.
- W4220921757 cites W2151693816 @default.
- W4220921757 cites W2157715872 @default.
- W4220921757 cites W2160979406 @default.
- W4220921757 cites W2164452299 @default.
- W4220921757 cites W2168452204 @default.
- W4220921757 cites W2289917018 @default.
- W4220921757 cites W2342838199 @default.
- W4220921757 cites W2500374603 @default.
- W4220921757 cites W2576230203 @default.
- W4220921757 cites W2590877996 @default.
- W4220921757 cites W2738753231 @default.
- W4220921757 cites W2783760338 @default.
- W4220921757 cites W2784187484 @default.
- W4220921757 cites W2788109278 @default.
- W4220921757 cites W2789876780 @default.
- W4220921757 cites W2800671114 @default.
- W4220921757 cites W2884144629 @default.
- W4220921757 cites W2889933451 @default.
- W4220921757 cites W2953901595 @default.
- W4220921757 cites W2954264020 @default.
- W4220921757 cites W2963081547 @default.
- W4220921757 cites W2964251511 @default.
- W4220921757 cites W2970910123 @default.
- W4220921757 cites W2972762120 @default.
- W4220921757 cites W2979683669 @default.
- W4220921757 cites W2980149757 @default.
- W4220921757 cites W3002566000 @default.
- W4220921757 cites W3009338239 @default.
- W4220921757 cites W3020124972 @default.
- W4220921757 cites W3034826771 @default.
- W4220921757 cites W3035446378 @default.
- W4220921757 cites W3102722370 @default.
- W4220921757 cites W3134510327 @default.
- W4220921757 cites W4206431952 @default.
- W4220921757 cites W4250955649 @default.
- W4220921757 doi "https://doi.org/10.3390/app12052734" @default.
- W4220921757 hasPublicationYear "2022" @default.
- W4220921757 type Work @default.
- W4220921757 citedByCount "6" @default.
- W4220921757 countsByYear W42209217572023 @default.
- W4220921757 crossrefType "journal-article" @default.
- W4220921757 hasAuthorship W4220921757A5024490909 @default.
- W4220921757 hasAuthorship W4220921757A5026281704 @default.
- W4220921757 hasAuthorship W4220921757A5048786760 @default.
- W4220921757 hasAuthorship W4220921757A5069523250 @default.
- W4220921757 hasBestOaLocation W42209217571 @default.
- W4220921757 hasConcept C124851039 @default.
- W4220921757 hasConcept C154945302 @default.
- W4220921757 hasConcept C31972630 @default.
- W4220921757 hasConcept C41008148 @default.
- W4220921757 hasConcept C94124525 @default.
- W4220921757 hasConceptScore W4220921757C124851039 @default.
- W4220921757 hasConceptScore W4220921757C154945302 @default.
- W4220921757 hasConceptScore W4220921757C31972630 @default.
- W4220921757 hasConceptScore W4220921757C41008148 @default.
- W4220921757 hasConceptScore W4220921757C94124525 @default.
- W4220921757 hasIssue "5" @default.
- W4220921757 hasLocation W42209217571 @default.
- W4220921757 hasLocation W42209217572 @default.
- W4220921757 hasLocation W42209217573 @default.
- W4220921757 hasLocation W42209217574 @default.
- W4220921757 hasOpenAccess W4220921757 @default.
- W4220921757 hasPrimaryLocation W42209217571 @default.
- W4220921757 hasRelatedWork W1891287906 @default.