Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220924972> ?p ?o ?g. }
- W4220924972 endingPage "e278" @default.
- W4220924972 startingPage "e266" @default.
- W4220924972 abstract "BackgroundUncertainty in patients' COVID-19 status contributes to treatment delays, nosocomial transmission, and operational pressures in hospitals. However, the typical turnaround time for laboratory PCR remains 12–24 h and lateral flow devices (LFDs) have limited sensitivity. Previously, we have shown that artificial intelligence-driven triage (CURIAL-1.0) can provide rapid COVID-19 screening using clinical data routinely available within 1 h of arrival to hospital. Here, we aimed to improve the time from arrival to the emergency department to the availability of a result, do external and prospective validation, and deploy a novel laboratory-free screening tool in a UK emergency department.MethodsWe optimised our previous model, removing less informative predictors to improve generalisability and speed, developing the CURIAL-Lab model with vital signs and readily available blood tests (full blood count [FBC]; urea, creatinine, and electrolytes; liver function tests; and C-reactive protein) and the CURIAL-Rapide model with vital signs and FBC alone. Models were validated externally for emergency admissions to University Hospitals Birmingham, Bedfordshire Hospitals, and Portsmouth Hospitals University National Health Service (NHS) trusts, and prospectively at Oxford University Hospitals, by comparison with PCR testing. Next, we compared model performance directly against LFDs and evaluated a combined pathway that triaged patients who had either a positive CURIAL model result or a positive LFD to a COVID-19-suspected clinical area. Lastly, we deployed CURIAL-Rapide alongside an approved point-of-care FBC analyser to provide laboratory-free COVID-19 screening at the John Radcliffe Hospital (Oxford, UK). Our primary improvement outcome was time-to-result, and our performance measures were sensitivity, specificity, positive and negative predictive values, and area under receiver operating characteristic curve (AUROC).Findings72 223 patients met eligibility criteria across the four validating hospital groups, in a total validation period spanning Dec 1, 2019, to March 31, 2021. CURIAL-Lab and CURIAL-Rapide performed consistently across trusts (AUROC range 0·858–0·881, 95% CI 0·838–0·912, for CURIAL-Lab and 0·836–0·854, 0·814–0·889, for CURIAL-Rapide), achieving highest sensitivity at Portsmouth Hospitals (84·1%, Wilson's 95% CI 82·5–85·7, for CURIAL-Lab and 83·5%, 81·8–85·1, for CURIAL-Rapide) at specificities of 71·3% (70·9–71·8) for CURIAL-Lab and 63·6% (63·1–64·1) for CURIAL-Rapide. When combined with LFDs, model predictions improved triage sensitivity from 56·9% (51·7–62·0) for LFDs alone to 85·6% with CURIAL-Lab (81·6–88·9; AUROC 0·925) and 88·2% with CURIAL-Rapide (84·4–91·1; AUROC 0·919), thereby reducing missed COVID-19 cases by 65% with CURIAL-Lab and 72% with CURIAL-Rapide. For the prospective deployment of CURIAL-Rapide, 520 patients were enrolled for point-of-care FBC analysis between Feb 18 and May 10, 2021, of whom 436 received confirmatory PCR testing and ten (2·3%) tested positive. Median time from arrival to a CURIAL-Rapide result was 45 min (IQR 32–64), 16 min (26·3%) sooner than with LFDs (61 min, 37–99; log-rank p<0·0001), and 6 h 52 min (90·2%) sooner than with PCR (7 h 37 min, 6 h 5 min to 15 h 39 min; p<0·0001). Classification performance was high, with sensitivity of 87·5% (95% CI 52·9–97·8), specificity of 85·4% (81·3–88·7), and negative predictive value of 99·7% (98·2–99·9). CURIAL-Rapide correctly excluded infection for 31 (58·5%) of 53 patients who were triaged by a physician to a COVID-19-suspected area but went on to test negative by PCR.InterpretationOur findings show the generalisability, performance, and real-world operational benefits of artificial intelligence-driven screening for COVID-19 over standard-of-care in emergency departments. CURIAL-Rapide provided rapid, laboratory-free screening when used with near-patient FBC analysis, and was able to reduce the number of patients who tested negative for COVID-19 but were triaged to COVID-19-suspected areas.FundingThe Wellcome Trust, University of Oxford Medical and Life Sciences Translational Fund." @default.
- W4220924972 created "2022-04-03" @default.
- W4220924972 creator A5000029500 @default.
- W4220924972 creator A5004308127 @default.
- W4220924972 creator A5007659347 @default.
- W4220924972 creator A5009018290 @default.
- W4220924972 creator A5010326290 @default.
- W4220924972 creator A5013343091 @default.
- W4220924972 creator A5014539924 @default.
- W4220924972 creator A5016501048 @default.
- W4220924972 creator A5017318739 @default.
- W4220924972 creator A5017683536 @default.
- W4220924972 creator A5018374541 @default.
- W4220924972 creator A5020649067 @default.
- W4220924972 creator A5021629274 @default.
- W4220924972 creator A5021728517 @default.
- W4220924972 creator A5023184985 @default.
- W4220924972 creator A5023256501 @default.
- W4220924972 creator A5030438721 @default.
- W4220924972 creator A5031679555 @default.
- W4220924972 creator A5031890908 @default.
- W4220924972 creator A5035436567 @default.
- W4220924972 creator A5036248108 @default.
- W4220924972 creator A5036937491 @default.
- W4220924972 creator A5037257053 @default.
- W4220924972 creator A5039144600 @default.
- W4220924972 creator A5040302008 @default.
- W4220924972 creator A5042365955 @default.
- W4220924972 creator A5048924375 @default.
- W4220924972 creator A5049050359 @default.
- W4220924972 creator A5049692788 @default.
- W4220924972 creator A5050694469 @default.
- W4220924972 creator A5053750793 @default.
- W4220924972 creator A5055232479 @default.
- W4220924972 creator A5055850985 @default.
- W4220924972 creator A5056264311 @default.
- W4220924972 creator A5057463218 @default.
- W4220924972 creator A5058040976 @default.
- W4220924972 creator A5059036271 @default.
- W4220924972 creator A5059154016 @default.
- W4220924972 creator A5064800233 @default.
- W4220924972 creator A5069221667 @default.
- W4220924972 creator A5070475414 @default.
- W4220924972 creator A5072595456 @default.
- W4220924972 creator A5072798665 @default.
- W4220924972 creator A5077995279 @default.
- W4220924972 creator A5078467340 @default.
- W4220924972 creator A5082802432 @default.
- W4220924972 creator A5083276702 @default.
- W4220924972 creator A5085168986 @default.
- W4220924972 creator A5086547865 @default.
- W4220924972 date "2022-04-01" @default.
- W4220924972 modified "2023-10-06" @default.
- W4220924972 title "Real-world evaluation of rapid and laboratory-free COVID-19 triage for emergency care: external validation and pilot deployment of artificial intelligence driven screening" @default.
- W4220924972 cites W2022961959 @default.
- W4220924972 cites W2042571564 @default.
- W4220924972 cites W3014524604 @default.
- W4220924972 cites W3016535995 @default.
- W4220924972 cites W3024506939 @default.
- W4220924972 cites W3024682590 @default.
- W4220924972 cites W3025948831 @default.
- W4220924972 cites W3047909426 @default.
- W4220924972 cites W3081491793 @default.
- W4220924972 cites W3091985319 @default.
- W4220924972 cites W3094542430 @default.
- W4220924972 cites W3101399301 @default.
- W4220924972 cites W3110133734 @default.
- W4220924972 cites W3110677219 @default.
- W4220924972 cites W3111827453 @default.
- W4220924972 cites W3112465516 @default.
- W4220924972 cites W3122379149 @default.
- W4220924972 cites W3133975993 @default.
- W4220924972 cites W3136933888 @default.
- W4220924972 cites W3157934594 @default.
- W4220924972 cites W3158050822 @default.
- W4220924972 cites W3162131771 @default.
- W4220924972 cites W3165312480 @default.
- W4220924972 cites W3192688267 @default.
- W4220924972 cites W3200013141 @default.
- W4220924972 cites W4220939068 @default.
- W4220924972 cites W4237690308 @default.
- W4220924972 cites W4251216503 @default.
- W4220924972 doi "https://doi.org/10.1016/s2589-7500(21)00272-7" @default.
- W4220924972 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35279399" @default.
- W4220924972 hasPublicationYear "2022" @default.
- W4220924972 type Work @default.
- W4220924972 citedByCount "17" @default.
- W4220924972 countsByYear W42209249722022 @default.
- W4220924972 countsByYear W42209249722023 @default.
- W4220924972 crossrefType "journal-article" @default.
- W4220924972 hasAuthorship W4220924972A5000029500 @default.
- W4220924972 hasAuthorship W4220924972A5004308127 @default.
- W4220924972 hasAuthorship W4220924972A5007659347 @default.
- W4220924972 hasAuthorship W4220924972A5009018290 @default.
- W4220924972 hasAuthorship W4220924972A5010326290 @default.
- W4220924972 hasAuthorship W4220924972A5013343091 @default.
- W4220924972 hasAuthorship W4220924972A5014539924 @default.
- W4220924972 hasAuthorship W4220924972A5016501048 @default.