Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220925057> ?p ?o ?g. }
- W4220925057 endingPage "107017" @default.
- W4220925057 startingPage "107017" @default.
- W4220925057 abstract "In the paper, we propose a generalized deep nonlinear CNN model, named as MDD-Net, for filtering various kinds of ESPI fringe patterns with structure protection and shape preservation. We firstly design the multi dilated dense module (MDD-Module) via merging five 1-, 2-, 5- dilated convolutions with abundant skip connections. Then, we construct the MDD-Net via combing three MDD-Modules and five common convolutions in a staggered series manner with skip connection. In this way, the MDD-Net enhances the reuse of original features, improves the flow of deep features, promotes the fusion of different deep features, finally obtains the rich deep features in the filtering process. We also propose a shape-structure-consideration loss function by combining the MAE, MSE and SSIM loss functions, and construct an available pertinent dataset for ESPI fringe filtering. With the proposed dataset and the proposed loss function, we train the MDD-Net successfully. With the trained network, we directly get the results in batch without any parameter fine-turning and any pre-process or post-process. We test our method on many simulated and experimental ESPI fringes with different densities, and compare it with the existing SOOPDE, WFF, BL-Hilbert-L2, and FFD-Net methods. The performance is also evaluated quantitatively and qualitatively in terms of speckle reduction, structure protection, shape preservation, parameter finetuning and running time. Results demonstrate that our method can simultaneously reduce speckles, protect structures and preserve shapes in the fringe filtering and get the better results than the compared methods in all cases. Moreover, it has full advantages on excellent generalization and batch performance, and can be used to process a great number of ESPI fringe patterns rapidly. In fact, it has been successfully applied to the dynamic measurement in the paper." @default.
- W4220925057 created "2022-04-03" @default.
- W4220925057 creator A5005147758 @default.
- W4220925057 creator A5083648382 @default.
- W4220925057 creator A5083839367 @default.
- W4220925057 creator A5088539918 @default.
- W4220925057 date "2022-07-01" @default.
- W4220925057 modified "2023-09-25" @default.
- W4220925057 title "MDD-Net: A generalized network for speckle removal with structure protection and shape preservation for various kinds of ESPI fringe patterns" @default.
- W4220925057 cites W1969889063 @default.
- W4220925057 cites W1980637047 @default.
- W4220925057 cites W1998409517 @default.
- W4220925057 cites W2017965865 @default.
- W4220925057 cites W2030487009 @default.
- W4220925057 cites W2033603511 @default.
- W4220925057 cites W2041779571 @default.
- W4220925057 cites W2045725879 @default.
- W4220925057 cites W2045863772 @default.
- W4220925057 cites W2054844599 @default.
- W4220925057 cites W2064581922 @default.
- W4220925057 cites W2065186804 @default.
- W4220925057 cites W2065648684 @default.
- W4220925057 cites W2068677409 @default.
- W4220925057 cites W2069756904 @default.
- W4220925057 cites W2070328482 @default.
- W4220925057 cites W2082262359 @default.
- W4220925057 cites W2084557039 @default.
- W4220925057 cites W2122111757 @default.
- W4220925057 cites W2133665775 @default.
- W4220925057 cites W2143059606 @default.
- W4220925057 cites W2146052399 @default.
- W4220925057 cites W2147563577 @default.
- W4220925057 cites W2149853080 @default.
- W4220925057 cites W2150134853 @default.
- W4220925057 cites W2164429328 @default.
- W4220925057 cites W2288794765 @default.
- W4220925057 cites W2472505835 @default.
- W4220925057 cites W2617203277 @default.
- W4220925057 cites W2743982683 @default.
- W4220925057 cites W2771991857 @default.
- W4220925057 cites W2781711303 @default.
- W4220925057 cites W2785551900 @default.
- W4220925057 cites W2785864144 @default.
- W4220925057 cites W2789781760 @default.
- W4220925057 cites W2792117093 @default.
- W4220925057 cites W2804672126 @default.
- W4220925057 cites W2809732751 @default.
- W4220925057 cites W2905995769 @default.
- W4220925057 cites W2908284720 @default.
- W4220925057 cites W2911708608 @default.
- W4220925057 cites W2934740339 @default.
- W4220925057 cites W2941690081 @default.
- W4220925057 cites W2944779716 @default.
- W4220925057 cites W3011612142 @default.
- W4220925057 cites W3023796342 @default.
- W4220925057 cites W3033795254 @default.
- W4220925057 cites W3204980780 @default.
- W4220925057 cites W908172741 @default.
- W4220925057 cites W975281136 @default.
- W4220925057 doi "https://doi.org/10.1016/j.optlaseng.2022.107017" @default.
- W4220925057 hasPublicationYear "2022" @default.
- W4220925057 type Work @default.
- W4220925057 citedByCount "2" @default.
- W4220925057 countsByYear W42209250572022 @default.
- W4220925057 countsByYear W42209250572023 @default.
- W4220925057 crossrefType "journal-article" @default.
- W4220925057 hasAuthorship W4220925057A5005147758 @default.
- W4220925057 hasAuthorship W4220925057A5083648382 @default.
- W4220925057 hasAuthorship W4220925057A5083839367 @default.
- W4220925057 hasAuthorship W4220925057A5088539918 @default.
- W4220925057 hasConcept C102290492 @default.
- W4220925057 hasConcept C111919701 @default.
- W4220925057 hasConcept C11413529 @default.
- W4220925057 hasConcept C14036430 @default.
- W4220925057 hasConcept C14166107 @default.
- W4220925057 hasConcept C153180895 @default.
- W4220925057 hasConcept C154945302 @default.
- W4220925057 hasConcept C160633673 @default.
- W4220925057 hasConcept C18903297 @default.
- W4220925057 hasConcept C206588197 @default.
- W4220925057 hasConcept C2524010 @default.
- W4220925057 hasConcept C2777210771 @default.
- W4220925057 hasConcept C31972630 @default.
- W4220925057 hasConcept C33923547 @default.
- W4220925057 hasConcept C41008148 @default.
- W4220925057 hasConcept C78458016 @default.
- W4220925057 hasConcept C86803240 @default.
- W4220925057 hasConcept C98045186 @default.
- W4220925057 hasConceptScore W4220925057C102290492 @default.
- W4220925057 hasConceptScore W4220925057C111919701 @default.
- W4220925057 hasConceptScore W4220925057C11413529 @default.
- W4220925057 hasConceptScore W4220925057C14036430 @default.
- W4220925057 hasConceptScore W4220925057C14166107 @default.
- W4220925057 hasConceptScore W4220925057C153180895 @default.
- W4220925057 hasConceptScore W4220925057C154945302 @default.
- W4220925057 hasConceptScore W4220925057C160633673 @default.
- W4220925057 hasConceptScore W4220925057C18903297 @default.
- W4220925057 hasConceptScore W4220925057C206588197 @default.