Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220926084> ?p ?o ?g. }
- W4220926084 endingPage "101789" @default.
- W4220926084 startingPage "101789" @default.
- W4220926084 abstract "The relationship between crime patterns and associated variables has drawn a lot of attention. These variables play a critical role in crime prediction. While traditional regression models are capable of revealing the contribution of the variables, they are not optimal for crime prediction. In contrast, machine learning models are more effective for crime prediction, but most of them cannot estimate the contribution of each individual variable. This study aims to overcome this limitation by taking advantage of the interpretability of advanced machine learning models. Based on the routine activity theory and crime pattern theory, this study selects 17 variables for the crime prediction. The XGBoost algorithm is adopted to train the prediction model. A post-hoc interpretable method, Shapley additive explanation (SHAP), is used to discern the contribution of individual variables. A variable with a higher SHAP value has a higher contribution to the crime prediction model. In addition to the global model for the entire area, a local model is calibrated at each study unit, revealing the spatial variation of the variables' unique contributions. Among all 17 variables used in this model, the proportion of the non-local population and the ambient population aged 25–44 contribute more than other variables in predicting crime. The more the ambient population aged 25–44 in the area, the more the public thefts. Additionally, local SHAP values are mapped to demonstrate each variable's contribution to the crime prediction model across the study area. The results of the local models can help the police tackle the most important factors at each location, while the global model identifies the important factors for the entire region." @default.
- W4220926084 created "2022-04-03" @default.
- W4220926084 creator A5006645212 @default.
- W4220926084 creator A5027876747 @default.
- W4220926084 creator A5040647242 @default.
- W4220926084 creator A5056051834 @default.
- W4220926084 creator A5073139296 @default.
- W4220926084 creator A5073568638 @default.
- W4220926084 date "2022-06-01" @default.
- W4220926084 modified "2023-10-12" @default.
- W4220926084 title "Interpretable machine learning models for crime prediction" @default.
- W4220926084 cites W1828718921 @default.
- W4220926084 cites W1929966818 @default.
- W4220926084 cites W1975818108 @default.
- W4220926084 cites W1978271550 @default.
- W4220926084 cites W1988129261 @default.
- W4220926084 cites W2001968975 @default.
- W4220926084 cites W2014995054 @default.
- W4220926084 cites W2020763685 @default.
- W4220926084 cites W2021204860 @default.
- W4220926084 cites W2034087592 @default.
- W4220926084 cites W2050384317 @default.
- W4220926084 cites W2062518320 @default.
- W4220926084 cites W2069302583 @default.
- W4220926084 cites W2076056983 @default.
- W4220926084 cites W2088833533 @default.
- W4220926084 cites W2121530077 @default.
- W4220926084 cites W2135008766 @default.
- W4220926084 cites W2164237336 @default.
- W4220926084 cites W2303392693 @default.
- W4220926084 cites W2407346572 @default.
- W4220926084 cites W2465972858 @default.
- W4220926084 cites W2607455846 @default.
- W4220926084 cites W2632538366 @default.
- W4220926084 cites W2643870827 @default.
- W4220926084 cites W2750999930 @default.
- W4220926084 cites W2775402959 @default.
- W4220926084 cites W2805743203 @default.
- W4220926084 cites W2808074800 @default.
- W4220926084 cites W2810349670 @default.
- W4220926084 cites W2883237442 @default.
- W4220926084 cites W2892741787 @default.
- W4220926084 cites W2898970737 @default.
- W4220926084 cites W2962772482 @default.
- W4220926084 cites W2963095307 @default.
- W4220926084 cites W2996705655 @default.
- W4220926084 cites W3000535873 @default.
- W4220926084 cites W3010317925 @default.
- W4220926084 cites W3016061525 @default.
- W4220926084 cites W3017093935 @default.
- W4220926084 cites W3020622509 @default.
- W4220926084 cites W3031053999 @default.
- W4220926084 cites W3046642770 @default.
- W4220926084 cites W3089838435 @default.
- W4220926084 cites W3095478202 @default.
- W4220926084 cites W4249855545 @default.
- W4220926084 cites W70563149 @default.
- W4220926084 doi "https://doi.org/10.1016/j.compenvurbsys.2022.101789" @default.
- W4220926084 hasPublicationYear "2022" @default.
- W4220926084 type Work @default.
- W4220926084 citedByCount "17" @default.
- W4220926084 countsByYear W42209260842022 @default.
- W4220926084 countsByYear W42209260842023 @default.
- W4220926084 crossrefType "journal-article" @default.
- W4220926084 hasAuthorship W4220926084A5006645212 @default.
- W4220926084 hasAuthorship W4220926084A5027876747 @default.
- W4220926084 hasAuthorship W4220926084A5040647242 @default.
- W4220926084 hasAuthorship W4220926084A5056051834 @default.
- W4220926084 hasAuthorship W4220926084A5073139296 @default.
- W4220926084 hasAuthorship W4220926084A5073568638 @default.
- W4220926084 hasConcept C119857082 @default.
- W4220926084 hasConcept C134306372 @default.
- W4220926084 hasConcept C144024400 @default.
- W4220926084 hasConcept C149782125 @default.
- W4220926084 hasConcept C149923435 @default.
- W4220926084 hasConcept C152877465 @default.
- W4220926084 hasConcept C154945302 @default.
- W4220926084 hasConcept C15744967 @default.
- W4220926084 hasConcept C182365436 @default.
- W4220926084 hasConcept C27574286 @default.
- W4220926084 hasConcept C2776502983 @default.
- W4220926084 hasConcept C2776876444 @default.
- W4220926084 hasConcept C2781067378 @default.
- W4220926084 hasConcept C2908647359 @default.
- W4220926084 hasConcept C33923547 @default.
- W4220926084 hasConcept C41008148 @default.
- W4220926084 hasConcept C45804977 @default.
- W4220926084 hasConcept C73484699 @default.
- W4220926084 hasConceptScore W4220926084C119857082 @default.
- W4220926084 hasConceptScore W4220926084C134306372 @default.
- W4220926084 hasConceptScore W4220926084C144024400 @default.
- W4220926084 hasConceptScore W4220926084C149782125 @default.
- W4220926084 hasConceptScore W4220926084C149923435 @default.
- W4220926084 hasConceptScore W4220926084C152877465 @default.
- W4220926084 hasConceptScore W4220926084C154945302 @default.
- W4220926084 hasConceptScore W4220926084C15744967 @default.
- W4220926084 hasConceptScore W4220926084C182365436 @default.
- W4220926084 hasConceptScore W4220926084C27574286 @default.