Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220927055> ?p ?o ?g. }
- W4220927055 endingPage "395" @default.
- W4220927055 startingPage "395" @default.
- W4220927055 abstract "The profile of urban microclimates is important in many engineering fields, such as occupant’s thermal comfort and health, and other building engineering. To predict the profile of urban microclimate, this study applies the artificial neural network and long short-term memory network predictive models, and an urban microclimate dataset was obtained with a long-term monitoring from year 2017 to 2019 with 5-min resolution including temperature, relative humidity, and solar radiation. Two predictive models were applied, and the first (Model 1) is to apply the predictive techniques to predict the urban microclimate in the real-time sequence, and then extract the characteristics of urban microclimate, while the second (Model 2) is to directly extract the characteristics of the microclimate, and then predict the characteristics of the microclimate. Backpropagation artificial neural network (BP-ANN) and long-short term memory (LSTM) techniques were applied in both models. The results show Model 1 with as the time-series prediction can reach the best (99.92%) of correlation coefficient and 98% of the mean average percentage error (MAPE), for temperature, while 99.66% and 98.18% for relative humidity, respectively, while accuracies in Model 2 decreased to 79% and 88.6% of MAPE for temperature and relative humidity, respectively. The prediction of solar radiation using ANN and LSTM are 51.1% and 57.8% of the correlation coefficient, respectively." @default.
- W4220927055 created "2022-04-03" @default.
- W4220927055 creator A5046597133 @default.
- W4220927055 creator A5051027971 @default.
- W4220927055 creator A5059394513 @default.
- W4220927055 creator A5063756360 @default.
- W4220927055 creator A5088214603 @default.
- W4220927055 date "2022-03-23" @default.
- W4220927055 modified "2023-10-14" @default.
- W4220927055 title "Revealing Microclimate around Buildings with Long-Term Monitoring through the Neural Network Algorithms" @default.
- W4220927055 cites W1976222123 @default.
- W4220927055 cites W2106828141 @default.
- W4220927055 cites W2567261877 @default.
- W4220927055 cites W2803154175 @default.
- W4220927055 cites W2895418140 @default.
- W4220927055 cites W2919772941 @default.
- W4220927055 cites W2937035649 @default.
- W4220927055 cites W2954686660 @default.
- W4220927055 cites W2969068985 @default.
- W4220927055 cites W2971297933 @default.
- W4220927055 cites W3000044261 @default.
- W4220927055 cites W3016726239 @default.
- W4220927055 cites W3037666360 @default.
- W4220927055 cites W3042288115 @default.
- W4220927055 cites W3047319676 @default.
- W4220927055 cites W3080759963 @default.
- W4220927055 cites W3088343648 @default.
- W4220927055 cites W3092594117 @default.
- W4220927055 cites W3097751230 @default.
- W4220927055 cites W3112735068 @default.
- W4220927055 cites W3113160850 @default.
- W4220927055 cites W3119257395 @default.
- W4220927055 cites W3121683301 @default.
- W4220927055 cites W3135131959 @default.
- W4220927055 cites W3137708158 @default.
- W4220927055 cites W3140164324 @default.
- W4220927055 cites W3145385004 @default.
- W4220927055 cites W3157047608 @default.
- W4220927055 cites W3167529752 @default.
- W4220927055 cites W3187211979 @default.
- W4220927055 cites W3198747238 @default.
- W4220927055 cites W3204663459 @default.
- W4220927055 cites W3207943157 @default.
- W4220927055 cites W3214732911 @default.
- W4220927055 cites W4210448318 @default.
- W4220927055 cites W4283383684 @default.
- W4220927055 cites W772924519 @default.
- W4220927055 doi "https://doi.org/10.3390/buildings12040395" @default.
- W4220927055 hasPublicationYear "2022" @default.
- W4220927055 type Work @default.
- W4220927055 citedByCount "3" @default.
- W4220927055 countsByYear W42209270552022 @default.
- W4220927055 countsByYear W42209270552023 @default.
- W4220927055 crossrefType "journal-article" @default.
- W4220927055 hasAuthorship W4220927055A5046597133 @default.
- W4220927055 hasAuthorship W4220927055A5051027971 @default.
- W4220927055 hasAuthorship W4220927055A5059394513 @default.
- W4220927055 hasAuthorship W4220927055A5063756360 @default.
- W4220927055 hasAuthorship W4220927055A5088214603 @default.
- W4220927055 hasBestOaLocation W42209270551 @default.
- W4220927055 hasConcept C105795698 @default.
- W4220927055 hasConcept C11413529 @default.
- W4220927055 hasConcept C119857082 @default.
- W4220927055 hasConcept C121332964 @default.
- W4220927055 hasConcept C127313418 @default.
- W4220927055 hasConcept C151420433 @default.
- W4220927055 hasConcept C153294291 @default.
- W4220927055 hasConcept C154945302 @default.
- W4220927055 hasConcept C155032097 @default.
- W4220927055 hasConcept C158960510 @default.
- W4220927055 hasConcept C166957645 @default.
- W4220927055 hasConcept C205649164 @default.
- W4220927055 hasConcept C2780092901 @default.
- W4220927055 hasConcept C32957820 @default.
- W4220927055 hasConcept C33923547 @default.
- W4220927055 hasConcept C39432304 @default.
- W4220927055 hasConcept C41008148 @default.
- W4220927055 hasConcept C50644808 @default.
- W4220927055 hasConcept C61797465 @default.
- W4220927055 hasConcept C62520636 @default.
- W4220927055 hasConcept C91586092 @default.
- W4220927055 hasConceptScore W4220927055C105795698 @default.
- W4220927055 hasConceptScore W4220927055C11413529 @default.
- W4220927055 hasConceptScore W4220927055C119857082 @default.
- W4220927055 hasConceptScore W4220927055C121332964 @default.
- W4220927055 hasConceptScore W4220927055C127313418 @default.
- W4220927055 hasConceptScore W4220927055C151420433 @default.
- W4220927055 hasConceptScore W4220927055C153294291 @default.
- W4220927055 hasConceptScore W4220927055C154945302 @default.
- W4220927055 hasConceptScore W4220927055C155032097 @default.
- W4220927055 hasConceptScore W4220927055C158960510 @default.
- W4220927055 hasConceptScore W4220927055C166957645 @default.
- W4220927055 hasConceptScore W4220927055C205649164 @default.
- W4220927055 hasConceptScore W4220927055C2780092901 @default.
- W4220927055 hasConceptScore W4220927055C32957820 @default.
- W4220927055 hasConceptScore W4220927055C33923547 @default.
- W4220927055 hasConceptScore W4220927055C39432304 @default.
- W4220927055 hasConceptScore W4220927055C41008148 @default.