Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220931490> ?p ?o ?g. }
- W4220931490 endingPage "111120" @default.
- W4220931490 startingPage "111120" @default.
- W4220931490 abstract "Accurate identification of vehicle loads plays a great significance in design, monitoring and evaluation of bridges. However, it is hard to acquire them via conventional methods because of their weak practicality or low modeling accuracy. To this end, this study proposes an innovative method to perform load identification based on the random response power spectral density (PSD) and deep transfer learning strategy. This method belongs to a data-driven model, which avoids the expensive facility requirement or ill-posed inverse problem in conventional methods. Specifically, a vehicle-bridge interaction dynamic system considering the disturbance of road surface excitation is firstly established to generate structural response for any specified vehicle loads. Then, the corresponding response PSD is transformed to a three-dimensional matrix in the form of color image, by which the deep transfer learning strategy is incorporated in deep convolutional neural network for describing the mapping relationship between structural response and these specified vehicle loads. On this basis, load identification can be performed via inputting any interested response PSD into the established relationship. Finally, the effectiveness of the proposed method is validated numerically. The results demonstrate that it can accurately identify the vehicle weight, vehicle speed and road surface roughness with an overall accuracy exceeding 98% and presents an excellent anti-noise capacity." @default.
- W4220931490 created "2022-04-03" @default.
- W4220931490 creator A5012412861 @default.
- W4220931490 creator A5018472593 @default.
- W4220931490 creator A5027084254 @default.
- W4220931490 creator A5032512088 @default.
- W4220931490 creator A5050002028 @default.
- W4220931490 creator A5088569628 @default.
- W4220931490 date "2022-05-01" @default.
- W4220931490 modified "2023-10-16" @default.
- W4220931490 title "Novel identification technique of moving loads using the random response power spectral density and deep transfer learning" @default.
- W4220931490 cites W1523493493 @default.
- W4220931490 cites W1965040259 @default.
- W4220931490 cites W2064819745 @default.
- W4220931490 cites W2079424150 @default.
- W4220931490 cites W2087635115 @default.
- W4220931490 cites W2097117768 @default.
- W4220931490 cites W2112796928 @default.
- W4220931490 cites W2146171929 @default.
- W4220931490 cites W2165698076 @default.
- W4220931490 cites W2194775991 @default.
- W4220931490 cites W2314303813 @default.
- W4220931490 cites W2534367305 @default.
- W4220931490 cites W2570953216 @default.
- W4220931490 cites W2618530766 @default.
- W4220931490 cites W2793748566 @default.
- W4220931490 cites W2801492038 @default.
- W4220931490 cites W2884088218 @default.
- W4220931490 cites W2887280559 @default.
- W4220931490 cites W2921963189 @default.
- W4220931490 cites W2946314453 @default.
- W4220931490 cites W2970362668 @default.
- W4220931490 cites W3014417049 @default.
- W4220931490 cites W3015949035 @default.
- W4220931490 cites W3030361574 @default.
- W4220931490 cites W3039048397 @default.
- W4220931490 cites W3081517060 @default.
- W4220931490 cites W3088297561 @default.
- W4220931490 cites W3125051152 @default.
- W4220931490 cites W3135117492 @default.
- W4220931490 cites W3158439948 @default.
- W4220931490 cites W3176893523 @default.
- W4220931490 cites W3198863380 @default.
- W4220931490 cites W4210715608 @default.
- W4220931490 doi "https://doi.org/10.1016/j.measurement.2022.111120" @default.
- W4220931490 hasPublicationYear "2022" @default.
- W4220931490 type Work @default.
- W4220931490 citedByCount "20" @default.
- W4220931490 countsByYear W42209314902022 @default.
- W4220931490 countsByYear W42209314902023 @default.
- W4220931490 crossrefType "journal-article" @default.
- W4220931490 hasAuthorship W4220931490A5012412861 @default.
- W4220931490 hasAuthorship W4220931490A5018472593 @default.
- W4220931490 hasAuthorship W4220931490A5027084254 @default.
- W4220931490 hasAuthorship W4220931490A5032512088 @default.
- W4220931490 hasAuthorship W4220931490A5050002028 @default.
- W4220931490 hasAuthorship W4220931490A5088569628 @default.
- W4220931490 hasConcept C115961682 @default.
- W4220931490 hasConcept C116834253 @default.
- W4220931490 hasConcept C127413603 @default.
- W4220931490 hasConcept C138885662 @default.
- W4220931490 hasConcept C154945302 @default.
- W4220931490 hasConcept C168110828 @default.
- W4220931490 hasConcept C2775924081 @default.
- W4220931490 hasConcept C2776401178 @default.
- W4220931490 hasConcept C41008148 @default.
- W4220931490 hasConcept C41895202 @default.
- W4220931490 hasConcept C47446073 @default.
- W4220931490 hasConcept C59822182 @default.
- W4220931490 hasConcept C76155785 @default.
- W4220931490 hasConcept C81363708 @default.
- W4220931490 hasConcept C86803240 @default.
- W4220931490 hasConcept C99498987 @default.
- W4220931490 hasConceptScore W4220931490C115961682 @default.
- W4220931490 hasConceptScore W4220931490C116834253 @default.
- W4220931490 hasConceptScore W4220931490C127413603 @default.
- W4220931490 hasConceptScore W4220931490C138885662 @default.
- W4220931490 hasConceptScore W4220931490C154945302 @default.
- W4220931490 hasConceptScore W4220931490C168110828 @default.
- W4220931490 hasConceptScore W4220931490C2775924081 @default.
- W4220931490 hasConceptScore W4220931490C2776401178 @default.
- W4220931490 hasConceptScore W4220931490C41008148 @default.
- W4220931490 hasConceptScore W4220931490C41895202 @default.
- W4220931490 hasConceptScore W4220931490C47446073 @default.
- W4220931490 hasConceptScore W4220931490C59822182 @default.
- W4220931490 hasConceptScore W4220931490C76155785 @default.
- W4220931490 hasConceptScore W4220931490C81363708 @default.
- W4220931490 hasConceptScore W4220931490C86803240 @default.
- W4220931490 hasConceptScore W4220931490C99498987 @default.
- W4220931490 hasFunder F4320321001 @default.
- W4220931490 hasFunder F4320323172 @default.
- W4220931490 hasFunder F4320326957 @default.
- W4220931490 hasLocation W42209314901 @default.
- W4220931490 hasOpenAccess W4220931490 @default.
- W4220931490 hasPrimaryLocation W42209314901 @default.
- W4220931490 hasRelatedWork W2318112981 @default.
- W4220931490 hasRelatedWork W2811106690 @default.
- W4220931490 hasRelatedWork W2936819511 @default.