Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220931804> ?p ?o ?g. }
- W4220931804 endingPage "79" @default.
- W4220931804 startingPage "79" @default.
- W4220931804 abstract "Solar energy is one of the most important renewable energies, with many advantages over other sources. Many parameters affect the electricity generation from solar plants. This paper aims to study the influence of these parameters on predicting solar radiation and electric energy produced in the Salt-Jordan region (Middle East) using long short-term memory (LSTM) and Adaptive Network-based Fuzzy Inference System (ANFIS) models. The data relating to 24 meteorological parameters for nearly the past five years were downloaded from the MeteoBleu database. The results show that the influence of parameters on solar radiation varies according to the season. The forecasting using ANFIS provides better results when the parameter correlation with solar radiation is high (i.e., Pearson Correlation Coefficient PCC between 0.95 and 1). In comparison, the LSTM neural network shows better results when correlation is low (PCC in the range 0.5–0.8). The obtained RMSE varies from 0.04 to 0.8 depending on the season and used parameters; new meteorological parameters influencing solar radiation are also investigated." @default.
- W4220931804 created "2022-04-03" @default.
- W4220931804 creator A5012506211 @default.
- W4220931804 creator A5013473310 @default.
- W4220931804 creator A5024834557 @default.
- W4220931804 creator A5041058917 @default.
- W4220931804 creator A5049566249 @default.
- W4220931804 creator A5055451189 @default.
- W4220931804 date "2022-03-05" @default.
- W4220931804 modified "2023-10-11" @default.
- W4220931804 title "Solar Radiation Forecasting by Pearson Correlation Using LSTM Neural Network and ANFIS Method: Application in the West-Central Jordan" @default.
- W4220931804 cites W1966202556 @default.
- W4220931804 cites W2102661631 @default.
- W4220931804 cites W2115294291 @default.
- W4220931804 cites W2145223608 @default.
- W4220931804 cites W2344823099 @default.
- W4220931804 cites W2587586954 @default.
- W4220931804 cites W2638921140 @default.
- W4220931804 cites W2774972939 @default.
- W4220931804 cites W2781167107 @default.
- W4220931804 cites W2902568599 @default.
- W4220931804 cites W2903221148 @default.
- W4220931804 cites W2903265999 @default.
- W4220931804 cites W2911892655 @default.
- W4220931804 cites W2921499805 @default.
- W4220931804 cites W2963547301 @default.
- W4220931804 cites W2982966244 @default.
- W4220931804 cites W2988051163 @default.
- W4220931804 cites W2997163251 @default.
- W4220931804 cites W2997687323 @default.
- W4220931804 cites W3016497199 @default.
- W4220931804 cites W3038021107 @default.
- W4220931804 cites W3041954629 @default.
- W4220931804 cites W3092478740 @default.
- W4220931804 cites W3095189068 @default.
- W4220931804 cites W3096151625 @default.
- W4220931804 cites W3108470132 @default.
- W4220931804 cites W3113238525 @default.
- W4220931804 cites W3113247226 @default.
- W4220931804 cites W3113480591 @default.
- W4220931804 cites W3117367378 @default.
- W4220931804 cites W3119762899 @default.
- W4220931804 cites W3120179560 @default.
- W4220931804 cites W3127838652 @default.
- W4220931804 cites W3127853704 @default.
- W4220931804 cites W3128657946 @default.
- W4220931804 cites W3130261646 @default.
- W4220931804 cites W3132872190 @default.
- W4220931804 cites W3134421076 @default.
- W4220931804 cites W3142328061 @default.
- W4220931804 cites W3152902196 @default.
- W4220931804 cites W3153868396 @default.
- W4220931804 cites W3157047608 @default.
- W4220931804 cites W3159778105 @default.
- W4220931804 cites W3167874896 @default.
- W4220931804 cites W3172296847 @default.
- W4220931804 cites W3174422284 @default.
- W4220931804 cites W3198282457 @default.
- W4220931804 cites W4200337841 @default.
- W4220931804 cites W4200565213 @default.
- W4220931804 cites W4230677848 @default.
- W4220931804 cites W3162413807 @default.
- W4220931804 doi "https://doi.org/10.3390/fi14030079" @default.
- W4220931804 hasPublicationYear "2022" @default.
- W4220931804 type Work @default.
- W4220931804 citedByCount "15" @default.
- W4220931804 countsByYear W42209318042022 @default.
- W4220931804 countsByYear W42209318042023 @default.
- W4220931804 crossrefType "journal-article" @default.
- W4220931804 hasAuthorship W4220931804A5012506211 @default.
- W4220931804 hasAuthorship W4220931804A5013473310 @default.
- W4220931804 hasAuthorship W4220931804A5024834557 @default.
- W4220931804 hasAuthorship W4220931804A5041058917 @default.
- W4220931804 hasAuthorship W4220931804A5049566249 @default.
- W4220931804 hasAuthorship W4220931804A5055451189 @default.
- W4220931804 hasBestOaLocation W42209318041 @default.
- W4220931804 hasConcept C105795698 @default.
- W4220931804 hasConcept C119599485 @default.
- W4220931804 hasConcept C119857082 @default.
- W4220931804 hasConcept C120665830 @default.
- W4220931804 hasConcept C121332964 @default.
- W4220931804 hasConcept C127413603 @default.
- W4220931804 hasConcept C139945424 @default.
- W4220931804 hasConcept C153294291 @default.
- W4220931804 hasConcept C153385146 @default.
- W4220931804 hasConcept C154945302 @default.
- W4220931804 hasConcept C186108316 @default.
- W4220931804 hasConcept C188573790 @default.
- W4220931804 hasConcept C195975749 @default.
- W4220931804 hasConcept C2780092901 @default.
- W4220931804 hasConcept C2988105877 @default.
- W4220931804 hasConcept C33923547 @default.
- W4220931804 hasConcept C39432304 @default.
- W4220931804 hasConcept C41008148 @default.
- W4220931804 hasConcept C50644808 @default.
- W4220931804 hasConcept C541104983 @default.
- W4220931804 hasConcept C55078378 @default.
- W4220931804 hasConcept C58166 @default.