Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220937178> ?p ?o ?g. }
- W4220937178 abstract "<sec> <title>BACKGROUND</title> Decisions regarding initial rhythm management strategy for patients with newly diagnosed atrial fibrillation (AF) are challenging to individualize. Prior work by our team has demonstrated feasibility of using machine learning algorithms at the level of diagnostic codes to predict rhythm management strategies; however, this work did not examine prediction models at the individual level. </sec> <sec> <title>OBJECTIVE</title> We aimed to examine decisions about rhythm management for AF and associated outcomes at the individual patient level, through mapping clinical trajectories within the electronic health record. We examined use of quantitative methods to predict the use of rate- or rhythm-control therapy in patients with a new diagnosis of AF. </sec> <sec> <title>METHODS</title> We performed a targeted chart review of patients with a new diagnosis of atrial fibrillation in the University of Colorado healthcare system from 2011 to 2020. We used clinical and demographic information to develop and test machine learning algorithms for predicting initial rhythm management strategy, and compared models based on accuracy as well as interpretability. Time-to-event and regression analyses were performed to predict the likelihood of change in rhythm management and the risk of subsequent hospitalization or death. </sec> <sec> <title>RESULTS</title> Of 419 patients with an EHR-diagnosis of new AF, we confirmed the diagnosis in 289 patients, 194 of whom we classified as paroxysmal and 95 persistent. For all patients with AF, rhythm-control therapy resulted in more total management changes. For paroxysmal AF, rhythm-control therapy resulted in fewer hospitalizations (incidence rate ratio 0.32, 95% CI 0.19-0.34) and no difference in mortality compared to rate-control therapy. For persistent AF, rhythm control resulted in more hospitalizations (incidence rate ratio 2.44, 95% CI 1.41-4.22) with no difference in mortality. Machine learning models could predict the initial strategy with limited accuracy, which was higher in patients with persistent than paroxysmal AF. </sec> <sec> <title>CONCLUSIONS</title> Quantitative decision models for rhythm management of AF can be developed through trajectory mapping using chart review. Discussion about patient-centered outcomes should be considered when selecting initial therapy for atrial fibrillation. </sec> <sec> <title>CLINICALTRIAL</title> n/a </sec>" @default.
- W4220937178 created "2022-04-03" @default.
- W4220937178 creator A5002359767 @default.
- W4220937178 creator A5022135400 @default.
- W4220937178 creator A5030903996 @default.
- W4220937178 creator A5032347518 @default.
- W4220937178 creator A5058396008 @default.
- W4220937178 creator A5060915805 @default.
- W4220937178 creator A5067446728 @default.
- W4220937178 creator A5071007546 @default.
- W4220937178 creator A5084138440 @default.
- W4220937178 creator A5084591002 @default.
- W4220937178 creator A5085940278 @default.
- W4220937178 creator A5090248417 @default.
- W4220937178 date "2022-03-21" @default.
- W4220937178 modified "2023-09-28" @default.
- W4220937178 title "Application of quantitative methods to selection of rhythm management strategies in patients with newly diagnosed atrial fibrillation: a retrospective observational study (Preprint)" @default.
- W4220937178 cites W1578463263 @default.
- W4220937178 cites W1779612606 @default.
- W4220937178 cites W1970242617 @default.
- W4220937178 cites W1994231358 @default.
- W4220937178 cites W2000658385 @default.
- W4220937178 cites W2012487908 @default.
- W4220937178 cites W2015778075 @default.
- W4220937178 cites W2018003197 @default.
- W4220937178 cites W2020741490 @default.
- W4220937178 cites W2029961647 @default.
- W4220937178 cites W2035146303 @default.
- W4220937178 cites W2038329412 @default.
- W4220937178 cites W2070654626 @default.
- W4220937178 cites W2102129403 @default.
- W4220937178 cites W2107020336 @default.
- W4220937178 cites W2107934559 @default.
- W4220937178 cites W2109318634 @default.
- W4220937178 cites W2110253 @default.
- W4220937178 cites W2121149747 @default.
- W4220937178 cites W2125891322 @default.
- W4220937178 cites W2126749500 @default.
- W4220937178 cites W2131216658 @default.
- W4220937178 cites W2133730204 @default.
- W4220937178 cites W2155779925 @default.
- W4220937178 cites W2161696103 @default.
- W4220937178 cites W2161841138 @default.
- W4220937178 cites W2162871344 @default.
- W4220937178 cites W2499224120 @default.
- W4220937178 cites W2517446950 @default.
- W4220937178 cites W2522325416 @default.
- W4220937178 cites W2759932154 @default.
- W4220937178 cites W2786284673 @default.
- W4220937178 cites W2786781710 @default.
- W4220937178 cites W2792431841 @default.
- W4220937178 cites W2805212540 @default.
- W4220937178 cites W2920804236 @default.
- W4220937178 cites W2967100253 @default.
- W4220937178 cites W2991392412 @default.
- W4220937178 cites W2991416550 @default.
- W4220937178 cites W2996354605 @default.
- W4220937178 cites W3041324631 @default.
- W4220937178 cites W3082581289 @default.
- W4220937178 cites W3140755384 @default.
- W4220937178 cites W3161610326 @default.
- W4220937178 cites W3194018622 @default.
- W4220937178 cites W4200031888 @default.
- W4220937178 cites W4205089856 @default.
- W4220937178 cites W4245449645 @default.
- W4220937178 cites W4245710173 @default.
- W4220937178 cites W4246744191 @default.
- W4220937178 doi "https://doi.org/10.2196/preprints.38097" @default.
- W4220937178 hasPublicationYear "2022" @default.
- W4220937178 type Work @default.
- W4220937178 citedByCount "0" @default.
- W4220937178 crossrefType "posted-content" @default.
- W4220937178 hasAuthorship W4220937178A5002359767 @default.
- W4220937178 hasAuthorship W4220937178A5022135400 @default.
- W4220937178 hasAuthorship W4220937178A5030903996 @default.
- W4220937178 hasAuthorship W4220937178A5032347518 @default.
- W4220937178 hasAuthorship W4220937178A5058396008 @default.
- W4220937178 hasAuthorship W4220937178A5060915805 @default.
- W4220937178 hasAuthorship W4220937178A5067446728 @default.
- W4220937178 hasAuthorship W4220937178A5071007546 @default.
- W4220937178 hasAuthorship W4220937178A5084138440 @default.
- W4220937178 hasAuthorship W4220937178A5084591002 @default.
- W4220937178 hasAuthorship W4220937178A5085940278 @default.
- W4220937178 hasAuthorship W4220937178A5090248417 @default.
- W4220937178 hasConcept C119857082 @default.
- W4220937178 hasConcept C126322002 @default.
- W4220937178 hasConcept C135343436 @default.
- W4220937178 hasConcept C1862650 @default.
- W4220937178 hasConcept C194828623 @default.
- W4220937178 hasConcept C23131810 @default.
- W4220937178 hasConcept C2779161974 @default.
- W4220937178 hasConcept C2781067378 @default.
- W4220937178 hasConcept C41008148 @default.
- W4220937178 hasConcept C71924100 @default.
- W4220937178 hasConceptScore W4220937178C119857082 @default.
- W4220937178 hasConceptScore W4220937178C126322002 @default.
- W4220937178 hasConceptScore W4220937178C135343436 @default.
- W4220937178 hasConceptScore W4220937178C1862650 @default.
- W4220937178 hasConceptScore W4220937178C194828623 @default.
- W4220937178 hasConceptScore W4220937178C23131810 @default.