Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220941542> ?p ?o ?g. }
- W4220941542 endingPage "283" @default.
- W4220941542 startingPage "280" @default.
- W4220941542 abstract "Ancient history relies on disciplines such as epigraphy-the study of inscribed texts known as inscriptions-for evidence of the thought, language, society and history of past civilizations1. However, over the centuries, many inscriptions have been damaged to the point of illegibility, transported far from their original location and their date of writing is steeped in uncertainty. Here we present Ithaca, a deep neural network for the textual restoration, geographical attribution and chronological attribution of ancient Greek inscriptions. Ithaca is designed to assist and expand the historian's workflow. The architecture of Ithaca focuses on collaboration, decision support and interpretability. While Ithaca alone achieves 62% accuracy when restoring damaged texts, the use of Ithaca by historians improved their accuracy from 25% to 72%, confirming the synergistic effect of this research tool. Ithaca can attribute inscriptions to their original location with an accuracy of 71% and can date them to less than 30 years of their ground-truth ranges, redating key texts of Classical Athens and contributing to topical debates in ancient history. This research shows how models such as Ithaca can unlock the cooperative potential between artificial intelligence and historians, transformationally impacting the way that we study and write about one of the most important periods in human history." @default.
- W4220941542 created "2022-04-03" @default.
- W4220941542 creator A5012498862 @default.
- W4220941542 creator A5033894687 @default.
- W4220941542 creator A5037147753 @default.
- W4220941542 creator A5043118390 @default.
- W4220941542 creator A5062217721 @default.
- W4220941542 creator A5069270736 @default.
- W4220941542 creator A5072510914 @default.
- W4220941542 creator A5076716588 @default.
- W4220941542 creator A5082304130 @default.
- W4220941542 date "2022-03-09" @default.
- W4220941542 modified "2023-10-17" @default.
- W4220941542 title "Restoring and attributing ancient texts using deep neural networks" @default.
- W4220941542 cites W1830482814 @default.
- W4220941542 cites W1973400336 @default.
- W4220941542 cites W1980469977 @default.
- W4220941542 cites W1988742963 @default.
- W4220941542 cites W1993332133 @default.
- W4220941542 cites W1993724038 @default.
- W4220941542 cites W1993909881 @default.
- W4220941542 cites W2012540919 @default.
- W4220941542 cites W2048909216 @default.
- W4220941542 cites W2080178477 @default.
- W4220941542 cites W2100540313 @default.
- W4220941542 cites W2139434569 @default.
- W4220941542 cites W2158667106 @default.
- W4220941542 cites W2259857237 @default.
- W4220941542 cites W2271347174 @default.
- W4220941542 cites W2318259934 @default.
- W4220941542 cites W2339619249 @default.
- W4220941542 cites W2489453560 @default.
- W4220941542 cites W2513477448 @default.
- W4220941542 cites W2542784784 @default.
- W4220941542 cites W2564188453 @default.
- W4220941542 cites W2740753882 @default.
- W4220941542 cites W2766447205 @default.
- W4220941542 cites W2772099350 @default.
- W4220941542 cites W2796746486 @default.
- W4220941542 cites W2810672851 @default.
- W4220941542 cites W2904419184 @default.
- W4220941542 cites W2919115771 @default.
- W4220941542 cites W2951559648 @default.
- W4220941542 cites W2951893044 @default.
- W4220941542 cites W2962819812 @default.
- W4220941542 cites W2963582782 @default.
- W4220941542 cites W2970619458 @default.
- W4220941542 cites W2971296908 @default.
- W4220941542 cites W2980030301 @default.
- W4220941542 cites W2988975212 @default.
- W4220941542 cites W2999044305 @default.
- W4220941542 cites W3037496935 @default.
- W4220941542 cites W3045913844 @default.
- W4220941542 cites W3082145431 @default.
- W4220941542 cites W3083658644 @default.
- W4220941542 cites W3103753836 @default.
- W4220941542 cites W3108523832 @default.
- W4220941542 cites W3112784172 @default.
- W4220941542 cites W3116713615 @default.
- W4220941542 cites W3129293584 @default.
- W4220941542 cites W3134079985 @default.
- W4220941542 cites W3157985159 @default.
- W4220941542 cites W3158023256 @default.
- W4220941542 cites W3171312764 @default.
- W4220941542 cites W3171450754 @default.
- W4220941542 cites W3172642864 @default.
- W4220941542 cites W4205842395 @default.
- W4220941542 cites W4230695653 @default.
- W4220941542 cites W4238076956 @default.
- W4220941542 cites W4248780917 @default.
- W4220941542 cites W573528795 @default.
- W4220941542 cites W622944094 @default.
- W4220941542 doi "https://doi.org/10.1038/s41586-022-04448-z" @default.
- W4220941542 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35264762" @default.
- W4220941542 hasPublicationYear "2022" @default.
- W4220941542 type Work @default.
- W4220941542 citedByCount "33" @default.
- W4220941542 countsByYear W42209415422022 @default.
- W4220941542 countsByYear W42209415422023 @default.
- W4220941542 crossrefType "journal-article" @default.
- W4220941542 hasAuthorship W4220941542A5012498862 @default.
- W4220941542 hasAuthorship W4220941542A5033894687 @default.
- W4220941542 hasAuthorship W4220941542A5037147753 @default.
- W4220941542 hasAuthorship W4220941542A5043118390 @default.
- W4220941542 hasAuthorship W4220941542A5062217721 @default.
- W4220941542 hasAuthorship W4220941542A5069270736 @default.
- W4220941542 hasAuthorship W4220941542A5072510914 @default.
- W4220941542 hasAuthorship W4220941542A5076716588 @default.
- W4220941542 hasAuthorship W4220941542A5082304130 @default.
- W4220941542 hasBestOaLocation W42209415421 @default.
- W4220941542 hasConcept C123657996 @default.
- W4220941542 hasConcept C124952713 @default.
- W4220941542 hasConcept C142362112 @default.
- W4220941542 hasConcept C154945302 @default.
- W4220941542 hasConcept C166957645 @default.
- W4220941542 hasConcept C2524010 @default.
- W4220941542 hasConcept C2781067378 @default.
- W4220941542 hasConcept C33923547 @default.