Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220942854> ?p ?o ?g. }
- W4220942854 endingPage "2650" @default.
- W4220942854 startingPage "2638" @default.
- W4220942854 abstract "<p indent=0mm>Robust decision-making for climate change adaptation under deep uncertainty is a common challenge faced by policymakers and scientists in the world. In recent years, the limitations of risk assessment and adaptation planning based on the prediction results of climate models have become increasingly acknowledged. The uncertainties embodied in the model specifications, model parameterizations, prediction results, decision implementation process, and context changes bring significant risks to decision-making far beyond the general recognition of uncertainty drawn from historical data. Such combined and future-looking uncertainty is termed deep uncertainty. Researchers have applied robust decision-making (RDM) theory, adaptation pathways (AP) method, and engineering options analysis (EOA) method to climate change adaptation decision-making research. These theories and techniques can help scientists and policy makers to couple systematic analysis with thoughtful deliberation, typically in coordination with stakeholders, to consider the implications of choices under likely and unlikely future conditions, and thus to better grasp the impact of deep uncertainty on climate change decision-making. The literature on RDM, AP, and EOA is huge and in this review paper, we focus on their advancements and applications in the field of coastal flood control, and review the main strengths and interconnections of these three methods. The RDM method combines the traditional control theory with modern management decision-making theory, focuses on future scenario generation, cost-benefit comparisons of multiple adaptation measures under different future scenarios, and conducts the comparative static screening of the large numbers of scenarios-adaptation measure combinations. The AP method pays more attention to the most plausible scenario-adaptation measure combinations as time goes towards the future, rather than giving the full consideration of all future scenarios, and promotes the consideration of solutions that are adaptable through time. The EOA method is based on the framework of the AP method, with a focus on the specific engineering design. As a consequence, it may lack consideration for larger-scale application and implications. This paper considers how these three methods can be integrated to serve the decision-making process which is characterized by multiple decision goals, large number of plausible future scenarios, and large number of feasible mitigation and adaptation measures. A demonstrative case study of Shanghai is presented for this purpose. This case study proposes a framework to serve the mission of dynamic adaptation planning and engineering designs by combining the strengths of RDM, AP and EOA. We expect that the integration can help researchers to identify “low-regret” and even “no-regret” solutions that are beneficial over a broad set of potential future situations. Because the integration must depend on the continuous and effective dialogues among scientists, policymakers, local experts, and other stakeholders, it is bound to be a co-production process of the decision-making knowledge and such a process has the potential to improve public confidence on the proposed policies and solutions. Finally, we argue that the integrated application of these three methods and the process of “knowledge co-creation” in the integration process are the key direction for future development in the field of climate change adaptation decision-making under the context of deep uncertainty." @default.
- W4220942854 created "2022-04-03" @default.
- W4220942854 creator A5011224227 @default.
- W4220942854 creator A5025539681 @default.
- W4220942854 creator A5041464316 @default.
- W4220942854 creator A5072322326 @default.
- W4220942854 date "2022-03-07" @default.
- W4220942854 modified "2023-09-26" @default.
- W4220942854 title "A review of decision-making methods for climate change adaptation under deep uncertainty: With a focus onflooding control in coastal cities" @default.
- W4220942854 cites W156982620 @default.
- W4220942854 cites W1951479652 @default.
- W4220942854 cites W1977006736 @default.
- W4220942854 cites W1977182481 @default.
- W4220942854 cites W1984909705 @default.
- W4220942854 cites W1996713867 @default.
- W4220942854 cites W2014164716 @default.
- W4220942854 cites W2019946969 @default.
- W4220942854 cites W2023994495 @default.
- W4220942854 cites W2028230084 @default.
- W4220942854 cites W2033471958 @default.
- W4220942854 cites W2034954833 @default.
- W4220942854 cites W2041441281 @default.
- W4220942854 cites W2065869505 @default.
- W4220942854 cites W2070831271 @default.
- W4220942854 cites W2096786954 @default.
- W4220942854 cites W2101412657 @default.
- W4220942854 cites W2115266682 @default.
- W4220942854 cites W2124614231 @default.
- W4220942854 cites W2137854332 @default.
- W4220942854 cites W2142237533 @default.
- W4220942854 cites W2155752244 @default.
- W4220942854 cites W2156442555 @default.
- W4220942854 cites W2166390850 @default.
- W4220942854 cites W2170260727 @default.
- W4220942854 cites W2170589321 @default.
- W4220942854 cites W2201240731 @default.
- W4220942854 cites W2335114787 @default.
- W4220942854 cites W2337532012 @default.
- W4220942854 cites W2529491643 @default.
- W4220942854 cites W2536654863 @default.
- W4220942854 cites W2616665687 @default.
- W4220942854 cites W2626764844 @default.
- W4220942854 cites W2772440039 @default.
- W4220942854 cites W2801671672 @default.
- W4220942854 cites W2808405493 @default.
- W4220942854 cites W2809404386 @default.
- W4220942854 cites W2811389973 @default.
- W4220942854 cites W2894713260 @default.
- W4220942854 cites W2913936452 @default.
- W4220942854 cites W2926990529 @default.
- W4220942854 cites W2929690378 @default.
- W4220942854 cites W2935034787 @default.
- W4220942854 cites W2942432719 @default.
- W4220942854 cites W2971681029 @default.
- W4220942854 cites W3122299950 @default.
- W4220942854 cites W3167806690 @default.
- W4220942854 cites W4235892773 @default.
- W4220942854 cites W607674676 @default.
- W4220942854 cites W4233634332 @default.
- W4220942854 doi "https://doi.org/10.1360/tb-2021-1218" @default.
- W4220942854 hasPublicationYear "2022" @default.
- W4220942854 type Work @default.
- W4220942854 citedByCount "0" @default.
- W4220942854 crossrefType "journal-article" @default.
- W4220942854 hasAuthorship W4220942854A5011224227 @default.
- W4220942854 hasAuthorship W4220942854A5025539681 @default.
- W4220942854 hasAuthorship W4220942854A5041464316 @default.
- W4220942854 hasAuthorship W4220942854A5072322326 @default.
- W4220942854 hasConcept C107826830 @default.
- W4220942854 hasConcept C111368507 @default.
- W4220942854 hasConcept C120665830 @default.
- W4220942854 hasConcept C121332964 @default.
- W4220942854 hasConcept C127313418 @default.
- W4220942854 hasConcept C132651083 @default.
- W4220942854 hasConcept C139807058 @default.
- W4220942854 hasConcept C154945302 @default.
- W4220942854 hasConcept C15744967 @default.
- W4220942854 hasConcept C169760540 @default.
- W4220942854 hasConcept C192209626 @default.
- W4220942854 hasConcept C2775924081 @default.
- W4220942854 hasConcept C2778851808 @default.
- W4220942854 hasConcept C39432304 @default.
- W4220942854 hasConcept C41008148 @default.
- W4220942854 hasConcept C91375879 @default.
- W4220942854 hasConceptScore W4220942854C107826830 @default.
- W4220942854 hasConceptScore W4220942854C111368507 @default.
- W4220942854 hasConceptScore W4220942854C120665830 @default.
- W4220942854 hasConceptScore W4220942854C121332964 @default.
- W4220942854 hasConceptScore W4220942854C127313418 @default.
- W4220942854 hasConceptScore W4220942854C132651083 @default.
- W4220942854 hasConceptScore W4220942854C139807058 @default.
- W4220942854 hasConceptScore W4220942854C154945302 @default.
- W4220942854 hasConceptScore W4220942854C15744967 @default.
- W4220942854 hasConceptScore W4220942854C169760540 @default.
- W4220942854 hasConceptScore W4220942854C192209626 @default.
- W4220942854 hasConceptScore W4220942854C2775924081 @default.
- W4220942854 hasConceptScore W4220942854C2778851808 @default.
- W4220942854 hasConceptScore W4220942854C39432304 @default.