Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220945761> ?p ?o ?g. }
- W4220945761 endingPage "121" @default.
- W4220945761 startingPage "103" @default.
- W4220945761 abstract "Abstract Knowledge about tree species distribution is important for forest management and for modeling and protecting biodiversity in forests. Methods based on images are inherently limited to the forest canopy. Airborne lidar data provide information about the trees’ geometric structure, as well as trees beneath the upper canopy layer. In this paper, the potential of two deep learning architectures (PointCNN, 3DmFV-Net) for classification of four different tree classes is evaluated using a lidar dataset acquired at the Bavarian Forest National Park (BFNP) in a leaf-on situation with a maximum point density of about 80 pts/m $$^{2}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mrow /> <mml:mn>2</mml:mn> </mml:msup> </mml:math> . Especially in the case of BFNP, dead wood plays a key role in forest biodiversity. Thus, the presented approaches are applied to the combined classification of living and dead trees. A total of 2721 single trees were delineated in advance using a normalized cut segmentation. The trees were manually labeled into four tree classes ( coniferous , deciduous , standing dead tree with crown, and snag ). Moreover, a multispectral orthophoto provided additional features, namely the Normalized Difference Vegetation Index. PointCNN with 3D points, laser intensity, and multispectral features resulted in a test accuracy of up to 87.0%. This highlights the potential of deep learning on point clouds in forestry. In contrast, 3DmFV-Net achieved a test accuracy of 73.2% for the same dataset using only the 3D coordinates of the laser points. The results show that the data fusion of lidar and multispectral data is invaluable for differentiation of the tree classes. Classification accuracy increases by up to 16.3% points when adding features generated from the multispectral orthophoto." @default.
- W4220945761 created "2022-04-03" @default.
- W4220945761 creator A5009146192 @default.
- W4220945761 creator A5031636087 @default.
- W4220945761 creator A5076060245 @default.
- W4220945761 creator A5091675713 @default.
- W4220945761 date "2022-03-30" @default.
- W4220945761 modified "2023-10-14" @default.
- W4220945761 title "Classification of Tree Species and Standing Dead Trees with Lidar Point Clouds Using Two Deep Neural Networks: PointCNN and 3DmFV-Net" @default.
- W4220945761 cites W129305155 @default.
- W4220945761 cites W1606858007 @default.
- W4220945761 cites W1644641054 @default.
- W4220945761 cites W1920022804 @default.
- W4220945761 cites W1966385142 @default.
- W4220945761 cites W1978244823 @default.
- W4220945761 cites W1997732436 @default.
- W4220945761 cites W2022576632 @default.
- W4220945761 cites W2076168387 @default.
- W4220945761 cites W2097117768 @default.
- W4220945761 cites W2121947440 @default.
- W4220945761 cites W2183341477 @default.
- W4220945761 cites W2194775991 @default.
- W4220945761 cites W2211722331 @default.
- W4220945761 cites W2515306179 @default.
- W4220945761 cites W2560609797 @default.
- W4220945761 cites W2771714473 @default.
- W4220945761 cites W2810240468 @default.
- W4220945761 cites W2919115771 @default.
- W4220945761 cites W2921401402 @default.
- W4220945761 cites W2963446712 @default.
- W4220945761 cites W2987303464 @default.
- W4220945761 cites W2989337326 @default.
- W4220945761 cites W2991201922 @default.
- W4220945761 cites W2991424587 @default.
- W4220945761 cites W3007170129 @default.
- W4220945761 cites W3022285594 @default.
- W4220945761 cites W3039448353 @default.
- W4220945761 cites W3047099884 @default.
- W4220945761 cites W3094124061 @default.
- W4220945761 cites W3105297345 @default.
- W4220945761 cites W3128323654 @default.
- W4220945761 cites W3132666576 @default.
- W4220945761 cites W3132859298 @default.
- W4220945761 cites W3136555145 @default.
- W4220945761 cites W3127059020 @default.
- W4220945761 doi "https://doi.org/10.1007/s41064-022-00200-4" @default.
- W4220945761 hasPublicationYear "2022" @default.
- W4220945761 type Work @default.
- W4220945761 citedByCount "5" @default.
- W4220945761 countsByYear W42209457612022 @default.
- W4220945761 countsByYear W42209457612023 @default.
- W4220945761 crossrefType "journal-article" @default.
- W4220945761 hasAuthorship W4220945761A5009146192 @default.
- W4220945761 hasAuthorship W4220945761A5031636087 @default.
- W4220945761 hasAuthorship W4220945761A5076060245 @default.
- W4220945761 hasAuthorship W4220945761A5091675713 @default.
- W4220945761 hasBestOaLocation W42209457611 @default.
- W4220945761 hasConcept C101000010 @default.
- W4220945761 hasConcept C113174947 @default.
- W4220945761 hasConcept C131979681 @default.
- W4220945761 hasConcept C134306372 @default.
- W4220945761 hasConcept C142724271 @default.
- W4220945761 hasConcept C147103442 @default.
- W4220945761 hasConcept C154945302 @default.
- W4220945761 hasConcept C166957645 @default.
- W4220945761 hasConcept C173163844 @default.
- W4220945761 hasConcept C18903297 @default.
- W4220945761 hasConcept C205649164 @default.
- W4220945761 hasConcept C2776133958 @default.
- W4220945761 hasConcept C28631016 @default.
- W4220945761 hasConcept C33283694 @default.
- W4220945761 hasConcept C33923547 @default.
- W4220945761 hasConcept C41008148 @default.
- W4220945761 hasConcept C51399673 @default.
- W4220945761 hasConcept C62649853 @default.
- W4220945761 hasConcept C71924100 @default.
- W4220945761 hasConcept C82789328 @default.
- W4220945761 hasConcept C86803240 @default.
- W4220945761 hasConcept C97137747 @default.
- W4220945761 hasConceptScore W4220945761C101000010 @default.
- W4220945761 hasConceptScore W4220945761C113174947 @default.
- W4220945761 hasConceptScore W4220945761C131979681 @default.
- W4220945761 hasConceptScore W4220945761C134306372 @default.
- W4220945761 hasConceptScore W4220945761C142724271 @default.
- W4220945761 hasConceptScore W4220945761C147103442 @default.
- W4220945761 hasConceptScore W4220945761C154945302 @default.
- W4220945761 hasConceptScore W4220945761C166957645 @default.
- W4220945761 hasConceptScore W4220945761C173163844 @default.
- W4220945761 hasConceptScore W4220945761C18903297 @default.
- W4220945761 hasConceptScore W4220945761C205649164 @default.
- W4220945761 hasConceptScore W4220945761C2776133958 @default.
- W4220945761 hasConceptScore W4220945761C28631016 @default.
- W4220945761 hasConceptScore W4220945761C33283694 @default.
- W4220945761 hasConceptScore W4220945761C33923547 @default.
- W4220945761 hasConceptScore W4220945761C41008148 @default.
- W4220945761 hasConceptScore W4220945761C51399673 @default.
- W4220945761 hasConceptScore W4220945761C62649853 @default.
- W4220945761 hasConceptScore W4220945761C71924100 @default.