Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220946472> ?p ?o ?g. }
- W4220946472 endingPage "8" @default.
- W4220946472 startingPage "1" @default.
- W4220946472 abstract "Reinforcement learning is a prominent computational approach for goal-directed learning and decision making, and exploration plays an important role in improving the agent's performance in reinforcement learning. In low-dimensional Markov decision processes, table reinforcement learning incorporated within count-based exploration works well for states of the Markov decision processes that can be easily exhausted. It is generally accepted that count-based exploration strategies turn inefficient when applied to high-dimensional Markov decision processes (generally high-dimensional state spaces, continuous action spaces, or both) since most states occur only once in deep reinforcement learning. Exploration methods widely applied in deep reinforcement learning rely on heuristic intrinsic motivation to explore unseen states or unreached parts of one state. The episodic memory module simulates the performance of hippocampus in human brain. This is exactly the memory of past experience. It seems logical to use episodic memory to count the situations encountered. Therefore, we use the contextual memory module to remember the states that the agent has encountered, as a count of states, and the purpose of exploration is to reduce the probability of encountering these states again. The purpose of exploration is to counter the episodic memory. In this article, we try to take advantage of the episodic memory module to estimate the number of states experienced, so as to counter the episodic memory. We conducted experiments on the OpenAI platform and found that counting accuracy of state is higher than that of the CTS model. At the same time, this method is used in high-dimensional object detection and tracking, also achieving good results." @default.
- W4220946472 created "2022-04-03" @default.
- W4220946472 creator A5005713681 @default.
- W4220946472 creator A5055838753 @default.
- W4220946472 creator A5058594445 @default.
- W4220946472 creator A5088536777 @default.
- W4220946472 date "2022-03-24" @default.
- W4220946472 modified "2023-09-25" @default.
- W4220946472 title "Exploration for Countering the Episodic Memory" @default.
- W4220946472 cites W177524714 @default.
- W4220946472 cites W2102605133 @default.
- W4220946472 cites W2109255472 @default.
- W4220946472 cites W2145339207 @default.
- W4220946472 cites W2168356304 @default.
- W4220946472 cites W2179352600 @default.
- W4220946472 cites W2179488730 @default.
- W4220946472 cites W2469312016 @default.
- W4220946472 cites W2586326130 @default.
- W4220946472 cites W2592943013 @default.
- W4220946472 cites W2726438754 @default.
- W4220946472 cites W2771590529 @default.
- W4220946472 cites W2884970059 @default.
- W4220946472 cites W2963523627 @default.
- W4220946472 cites W3103780890 @default.
- W4220946472 cites W4214717370 @default.
- W4220946472 doi "https://doi.org/10.1155/2022/7286186" @default.
- W4220946472 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35419049" @default.
- W4220946472 hasPublicationYear "2022" @default.
- W4220946472 type Work @default.
- W4220946472 citedByCount "0" @default.
- W4220946472 crossrefType "journal-article" @default.
- W4220946472 hasAuthorship W4220946472A5005713681 @default.
- W4220946472 hasAuthorship W4220946472A5055838753 @default.
- W4220946472 hasAuthorship W4220946472A5058594445 @default.
- W4220946472 hasAuthorship W4220946472A5088536777 @default.
- W4220946472 hasBestOaLocation W42209464721 @default.
- W4220946472 hasConcept C105795698 @default.
- W4220946472 hasConcept C106189395 @default.
- W4220946472 hasConcept C11413529 @default.
- W4220946472 hasConcept C119857082 @default.
- W4220946472 hasConcept C121332964 @default.
- W4220946472 hasConcept C125411270 @default.
- W4220946472 hasConcept C154945302 @default.
- W4220946472 hasConcept C15744967 @default.
- W4220946472 hasConcept C159886148 @default.
- W4220946472 hasConcept C169760540 @default.
- W4220946472 hasConcept C169900460 @default.
- W4220946472 hasConcept C173801870 @default.
- W4220946472 hasConcept C180747234 @default.
- W4220946472 hasConcept C2780791683 @default.
- W4220946472 hasConcept C33923547 @default.
- W4220946472 hasConcept C41008148 @default.
- W4220946472 hasConcept C48103436 @default.
- W4220946472 hasConcept C62520636 @default.
- W4220946472 hasConcept C67203356 @default.
- W4220946472 hasConcept C77805123 @default.
- W4220946472 hasConcept C88576662 @default.
- W4220946472 hasConcept C97541855 @default.
- W4220946472 hasConcept C98763669 @default.
- W4220946472 hasConceptScore W4220946472C105795698 @default.
- W4220946472 hasConceptScore W4220946472C106189395 @default.
- W4220946472 hasConceptScore W4220946472C11413529 @default.
- W4220946472 hasConceptScore W4220946472C119857082 @default.
- W4220946472 hasConceptScore W4220946472C121332964 @default.
- W4220946472 hasConceptScore W4220946472C125411270 @default.
- W4220946472 hasConceptScore W4220946472C154945302 @default.
- W4220946472 hasConceptScore W4220946472C15744967 @default.
- W4220946472 hasConceptScore W4220946472C159886148 @default.
- W4220946472 hasConceptScore W4220946472C169760540 @default.
- W4220946472 hasConceptScore W4220946472C169900460 @default.
- W4220946472 hasConceptScore W4220946472C173801870 @default.
- W4220946472 hasConceptScore W4220946472C180747234 @default.
- W4220946472 hasConceptScore W4220946472C2780791683 @default.
- W4220946472 hasConceptScore W4220946472C33923547 @default.
- W4220946472 hasConceptScore W4220946472C41008148 @default.
- W4220946472 hasConceptScore W4220946472C48103436 @default.
- W4220946472 hasConceptScore W4220946472C62520636 @default.
- W4220946472 hasConceptScore W4220946472C67203356 @default.
- W4220946472 hasConceptScore W4220946472C77805123 @default.
- W4220946472 hasConceptScore W4220946472C88576662 @default.
- W4220946472 hasConceptScore W4220946472C97541855 @default.
- W4220946472 hasConceptScore W4220946472C98763669 @default.
- W4220946472 hasLocation W42209464721 @default.
- W4220946472 hasLocation W42209464722 @default.
- W4220946472 hasLocation W42209464723 @default.
- W4220946472 hasLocation W42209464724 @default.
- W4220946472 hasOpenAccess W4220946472 @default.
- W4220946472 hasPrimaryLocation W42209464721 @default.
- W4220946472 hasRelatedWork W1556532828 @default.
- W4220946472 hasRelatedWork W1574991376 @default.
- W4220946472 hasRelatedWork W1985560493 @default.
- W4220946472 hasRelatedWork W1991138660 @default.
- W4220946472 hasRelatedWork W2937181779 @default.
- W4220946472 hasRelatedWork W4309864858 @default.
- W4220946472 hasRelatedWork W4319083788 @default.
- W4220946472 hasRelatedWork W4323030201 @default.
- W4220946472 hasRelatedWork W4324119149 @default.
- W4220946472 hasRelatedWork W4362598698 @default.