Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220948520> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4220948520 endingPage "7161" @default.
- W4220948520 startingPage "7156" @default.
- W4220948520 abstract "In this paper, different machine learning (ML) algorithms like Gaussian Naïve Bayes (GNB), K-Nearest Neighbours (KNN), Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF) and Adaptive Boosting Classifier (ABC) are used to classify the different types of faults on the transmission line. The faults and non-faults on the transmission line are created by simulating the transient behaviour of the long length transmission line by using PSCAD/EMTDC software. While simulating the faults and non-faults on the transmission line, fault resistance, fault inception angle, fault location and fault type are varied within their practical range. During the simulation, currents and voltages of three phases on both sides of the TL are measured using Current Transformers (CT) and Potential Transformers (PT) . Measured currents and voltages are pre-processed to produce the time series and frequency series parameters data set by using Fourier Transform in full cycle, half cycle, and quarter cycle from the fault instant. Feature reduction techniques select very important parameters among the calculated time series and frequency series parameters. After completing the data generation and pre-processing and application of feature reduction techniques, the machine learning algorithms are applied to the data in python software to get the comparative analysis. Noise analysis is also carried out in this work to assess the performance of the ML algorithms in dealing with the nonlinear data due to CT, PT saturation, and measurement errors." @default.
- W4220948520 created "2022-04-03" @default.
- W4220948520 creator A5016583460 @default.
- W4220948520 creator A5029866697 @default.
- W4220948520 date "2022-01-01" @default.
- W4220948520 modified "2023-09-26" @default.
- W4220948520 title "Data mining model and Gaussian Naive Bayes based fault diagnostic analysis of modern power system networks" @default.
- W4220948520 cites W2966945052 @default.
- W4220948520 cites W2991123693 @default.
- W4220948520 cites W3008914102 @default.
- W4220948520 cites W3037506063 @default.
- W4220948520 cites W3085009747 @default.
- W4220948520 doi "https://doi.org/10.1016/j.matpr.2022.03.035" @default.
- W4220948520 hasPublicationYear "2022" @default.
- W4220948520 type Work @default.
- W4220948520 citedByCount "1" @default.
- W4220948520 countsByYear W42209485202022 @default.
- W4220948520 crossrefType "journal-article" @default.
- W4220948520 hasAuthorship W4220948520A5016583460 @default.
- W4220948520 hasAuthorship W4220948520A5029866697 @default.
- W4220948520 hasConcept C11413529 @default.
- W4220948520 hasConcept C119599485 @default.
- W4220948520 hasConcept C119857082 @default.
- W4220948520 hasConcept C12267149 @default.
- W4220948520 hasConcept C124101348 @default.
- W4220948520 hasConcept C127413603 @default.
- W4220948520 hasConcept C140311924 @default.
- W4220948520 hasConcept C154945302 @default.
- W4220948520 hasConcept C169258074 @default.
- W4220948520 hasConcept C24326235 @default.
- W4220948520 hasConcept C33441834 @default.
- W4220948520 hasConcept C41008148 @default.
- W4220948520 hasConcept C52001869 @default.
- W4220948520 hasConceptScore W4220948520C11413529 @default.
- W4220948520 hasConceptScore W4220948520C119599485 @default.
- W4220948520 hasConceptScore W4220948520C119857082 @default.
- W4220948520 hasConceptScore W4220948520C12267149 @default.
- W4220948520 hasConceptScore W4220948520C124101348 @default.
- W4220948520 hasConceptScore W4220948520C127413603 @default.
- W4220948520 hasConceptScore W4220948520C140311924 @default.
- W4220948520 hasConceptScore W4220948520C154945302 @default.
- W4220948520 hasConceptScore W4220948520C169258074 @default.
- W4220948520 hasConceptScore W4220948520C24326235 @default.
- W4220948520 hasConceptScore W4220948520C33441834 @default.
- W4220948520 hasConceptScore W4220948520C41008148 @default.
- W4220948520 hasConceptScore W4220948520C52001869 @default.
- W4220948520 hasLocation W42209485201 @default.
- W4220948520 hasOpenAccess W4220948520 @default.
- W4220948520 hasPrimaryLocation W42209485201 @default.
- W4220948520 hasRelatedWork W2566202276 @default.
- W4220948520 hasRelatedWork W2595988085 @default.
- W4220948520 hasRelatedWork W2979979539 @default.
- W4220948520 hasRelatedWork W2985924212 @default.
- W4220948520 hasRelatedWork W3127425528 @default.
- W4220948520 hasRelatedWork W4205958290 @default.
- W4220948520 hasRelatedWork W4285225238 @default.
- W4220948520 hasRelatedWork W4311106074 @default.
- W4220948520 hasRelatedWork W4316658725 @default.
- W4220948520 hasRelatedWork W4320483443 @default.
- W4220948520 hasVolume "62" @default.
- W4220948520 isParatext "false" @default.
- W4220948520 isRetracted "false" @default.
- W4220948520 workType "article" @default.