Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220953054> ?p ?o ?g. }
- W4220953054 abstract "Abstract Objective To use the example of the effect of body mass index (BMI) on COVID-19 susceptibility and severity to illustrate methods to explore potential selection and misclassification bias in Mendelian randomisation (MR) of COVID-19 determinants. Design Two-sample MR analysis. Setting Summary statistics from the Genetic Investigation of ANthropometric Traits (GIANT) and COVID-19 Host Genetics Initiative (HGI) consortia. Participants 681,275 participants in GIANT and more than 2.5 million people from the COVID-19 HGI consortia. Exposure Genetically instrumented BMI. Main outcome measures Seven case/control definitions for SARS-CoV-2 infection and COVID-19 severity: very severe respiratory confirmed COVID-19 vs not hospitalised COVID-19 (A1) and vs population (those who were never tested, tested negative or had unknown testing status (A2)); hospitalised COVID-19 vs not hospitalised COVID-19 (B1) and vs population (B2); COVID-19 vs lab/self-reported negative (C1) and vs population (C2); and predicted COVID-19 from self-reported symptoms vs predicted or self-reported non-COVID-19 (D1). Results With the exception of A1 comparison, genetically higher BMI was associated with higher odds of COVID-19 in all comparison groups, with odds ratios (OR) ranging from 1.11 (95%CI: 0.94, 1.32) for D1 to 1.57 (95%CI: 1.57 (1.39, 1.78) for A2. As a method to assess selection bias, we found no strong evidence of an effect of COVID-19 on BMI in a ‘no-relevance’ analysis, in which COVID-19 was considered the exposure, although measured after BMI. We found evidence of genetic correlation between COVID-19 outcomes and potential predictors of selection determined a priori (smoking, education, and income), which could either indicate selection bias or a causal pathway to infection. Results from multivariable MR adjusting for these predictors of selection yielded similar results to the main analysis, suggesting the latter. Conclusions We have proposed a set of analyses for exploring potential selection and misclassification bias in MR studies of risk factors for SARS-CoV-2 infection and COVID-19 and demonstrated this with an illustrative example. Although selection by socioeconomic position and arelated traits is present, MR results are not substantially affected by selection/misclassification bias in our example. We recommend the methods we demonstrate, and provide detailed analytic code for their use, are used in MR studies assessing risk factors for COVID-19, and other MR studies where such biases are likely in the available data. Summary What is already known on this topic - Mendelian randomisation (MR) studies have been conducted to investigate the potential causal relationship between body mass index (BMI) and COVID-19 susceptibility and severity. - There are several sources of selection (e.g. when only subgroups with specific characteristics are tested or respond to study questionnaires) and misclassification (e.g. those not tested are assumed not to have COVID-19) that could bias MR studies of risk factors for COVID-19. - Previous MR studies have not explored how selection and misclassification bias in the underlying genome-wide association studies could bias MR results. What this study adds - Using the most recent release of the COVID-19 Host Genetics Initiative data (with data up to June 2021), we demonstrate a potential causal effect of BMI on susceptibility to detected SARS-CoV-2 infection and on severe COVID-19 disease, and that these results are unlikely to be substantially biased due to selection and misclassification. - This conclusion is based on no evidence of an effect of COVID-19 on BMI (a ‘no-relevance control’ study, as BMI was measured before the COVID-19 pandemic) and finding genetic correlation between predictors of selection (e.g. socioeconomic position) and COVID-19 for which multivariable MR supported a role in causing susceptibility to infection. - We recommend studies use the set of analyses demonstrated here in future MR studies of COVID-19 risk factors, or other examples where selection bias is likely." @default.
- W4220953054 created "2022-04-03" @default.
- W4220953054 creator A5001619907 @default.
- W4220953054 creator A5016483631 @default.
- W4220953054 creator A5022945304 @default.
- W4220953054 creator A5026279431 @default.
- W4220953054 creator A5027920187 @default.
- W4220953054 creator A5063056459 @default.
- W4220953054 creator A5076124471 @default.
- W4220953054 creator A5076729688 @default.
- W4220953054 creator A5079897358 @default.
- W4220953054 date "2022-03-05" @default.
- W4220953054 modified "2023-10-03" @default.
- W4220953054 title "The relationship between BMI and COVID-19: exploring misclassification and selection bias in a two-sample Mendelian randomisation study" @default.
- W4220953054 cites W1608887304 @default.
- W4220953054 cites W1963446763 @default.
- W4220953054 cites W2039153962 @default.
- W4220953054 cites W2103783427 @default.
- W4220953054 cites W2106036991 @default.
- W4220953054 cites W2113699335 @default.
- W4220953054 cites W2124994858 @default.
- W4220953054 cites W2144596601 @default.
- W4220953054 cites W2151096860 @default.
- W4220953054 cites W2195783463 @default.
- W4220953054 cites W2324862792 @default.
- W4220953054 cites W2402301293 @default.
- W4220953054 cites W2528374605 @default.
- W4220953054 cites W2798859745 @default.
- W4220953054 cites W2805983714 @default.
- W4220953054 cites W2810852503 @default.
- W4220953054 cites W2818417770 @default.
- W4220953054 cites W2897719756 @default.
- W4220953054 cites W2952883732 @default.
- W4220953054 cites W2963192358 @default.
- W4220953054 cites W2984443114 @default.
- W4220953054 cites W3028410545 @default.
- W4220953054 cites W3030759115 @default.
- W4220953054 cites W3034541161 @default.
- W4220953054 cites W3085879234 @default.
- W4220953054 cites W3093084901 @default.
- W4220953054 cites W3098590133 @default.
- W4220953054 cites W3111898055 @default.
- W4220953054 cites W3112105690 @default.
- W4220953054 cites W3122026974 @default.
- W4220953054 cites W3122256196 @default.
- W4220953054 cites W3126848866 @default.
- W4220953054 cites W3126981244 @default.
- W4220953054 cites W3130906542 @default.
- W4220953054 cites W3135080127 @default.
- W4220953054 cites W3154516839 @default.
- W4220953054 cites W3158983467 @default.
- W4220953054 cites W3185424197 @default.
- W4220953054 cites W3210406414 @default.
- W4220953054 cites W3216029110 @default.
- W4220953054 cites W4200332465 @default.
- W4220953054 cites W4207053972 @default.
- W4220953054 cites W4226267181 @default.
- W4220953054 doi "https://doi.org/10.1101/2022.03.03.22271836" @default.
- W4220953054 hasPublicationYear "2022" @default.
- W4220953054 type Work @default.
- W4220953054 citedByCount "3" @default.
- W4220953054 countsByYear W42209530542022 @default.
- W4220953054 countsByYear W42209530542023 @default.
- W4220953054 crossrefType "posted-content" @default.
- W4220953054 hasAuthorship W4220953054A5001619907 @default.
- W4220953054 hasAuthorship W4220953054A5016483631 @default.
- W4220953054 hasAuthorship W4220953054A5022945304 @default.
- W4220953054 hasAuthorship W4220953054A5026279431 @default.
- W4220953054 hasAuthorship W4220953054A5027920187 @default.
- W4220953054 hasAuthorship W4220953054A5063056459 @default.
- W4220953054 hasAuthorship W4220953054A5076124471 @default.
- W4220953054 hasAuthorship W4220953054A5076729688 @default.
- W4220953054 hasAuthorship W4220953054A5079897358 @default.
- W4220953054 hasBestOaLocation W42209530541 @default.
- W4220953054 hasConcept C126322002 @default.
- W4220953054 hasConcept C142724271 @default.
- W4220953054 hasConcept C143095724 @default.
- W4220953054 hasConcept C144024400 @default.
- W4220953054 hasConcept C149923435 @default.
- W4220953054 hasConcept C151956035 @default.
- W4220953054 hasConcept C156957248 @default.
- W4220953054 hasConcept C2779134260 @default.
- W4220953054 hasConcept C2780221984 @default.
- W4220953054 hasConcept C2908647359 @default.
- W4220953054 hasConcept C3008058167 @default.
- W4220953054 hasConcept C40423286 @default.
- W4220953054 hasConcept C524204448 @default.
- W4220953054 hasConcept C71924100 @default.
- W4220953054 hasConcept C99454951 @default.
- W4220953054 hasConceptScore W4220953054C126322002 @default.
- W4220953054 hasConceptScore W4220953054C142724271 @default.
- W4220953054 hasConceptScore W4220953054C143095724 @default.
- W4220953054 hasConceptScore W4220953054C144024400 @default.
- W4220953054 hasConceptScore W4220953054C149923435 @default.
- W4220953054 hasConceptScore W4220953054C151956035 @default.
- W4220953054 hasConceptScore W4220953054C156957248 @default.
- W4220953054 hasConceptScore W4220953054C2779134260 @default.
- W4220953054 hasConceptScore W4220953054C2780221984 @default.
- W4220953054 hasConceptScore W4220953054C2908647359 @default.
- W4220953054 hasConceptScore W4220953054C3008058167 @default.