Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220953753> ?p ?o ?g. }
- W4220953753 endingPage "859" @default.
- W4220953753 startingPage "848" @default.
- W4220953753 abstract "Photocatalysis has emerged as a powerful technology with beneficial impacts on the fields of science and engineering. To date, most photocatalysis research are experimentally-based that strongly rely on various experimental conditions. As the coronavirus pandemic hit the world in 2020, research and experiments were disrupted in various scientific disciplines. During these unprecedented times, machine learning plays a vital role in the continuity of photocatalysis research, notably for researchers under physical access restrictions. More specifically, machine learning is capable of predicting the photocatalytic efficiency and analysing the photocatalytic activity. In recent work, it was demonstrated that a Support Vector Regression (SVR) model succeeded in predicting the efficiency of methyl tert-butyl ether (MTBE) photodegradation using titanium dioxide (TiO2) as a photocatalyst, achieving a Root Mean Square Error (RMSE) of 5%. In this work, we investigate the applicability of the Gaussian Process (GP) technique to predict the photodegradation efficiency of contaminants catalyzed by pure and doped-titanium dioxide (TiO2); and we compare their performance with the current state-of-the-art SVR. Within this context, we discuss the foundations of both the machine learning models, as well as demonstrate how photocatalysis researchers can apply them to solving relevant problems in the field of photocatalysis." @default.
- W4220953753 created "2022-04-03" @default.
- W4220953753 creator A5000154274 @default.
- W4220953753 creator A5001377818 @default.
- W4220953753 creator A5018479820 @default.
- W4220953753 creator A5034929975 @default.
- W4220953753 creator A5066166428 @default.
- W4220953753 date "2022-05-01" @default.
- W4220953753 modified "2023-10-18" @default.
- W4220953753 title "Data-driven photocatalytic degradation activity prediction with Gaussian process" @default.
- W4220953753 cites W1840479564 @default.
- W4220953753 cites W1941725653 @default.
- W4220953753 cites W1983732131 @default.
- W4220953753 cites W1988755366 @default.
- W4220953753 cites W1992855217 @default.
- W4220953753 cites W1994285676 @default.
- W4220953753 cites W1997052242 @default.
- W4220953753 cites W1999067677 @default.
- W4220953753 cites W2010751757 @default.
- W4220953753 cites W2012361310 @default.
- W4220953753 cites W2012765068 @default.
- W4220953753 cites W2013366770 @default.
- W4220953753 cites W2020326257 @default.
- W4220953753 cites W2022548675 @default.
- W4220953753 cites W2036997220 @default.
- W4220953753 cites W2037108150 @default.
- W4220953753 cites W2042725539 @default.
- W4220953753 cites W2045558376 @default.
- W4220953753 cites W2059936666 @default.
- W4220953753 cites W2076651396 @default.
- W4220953753 cites W2076838653 @default.
- W4220953753 cites W2087431901 @default.
- W4220953753 cites W2110749577 @default.
- W4220953753 cites W2122695568 @default.
- W4220953753 cites W2151320466 @default.
- W4220953753 cites W2264518439 @default.
- W4220953753 cites W2314513281 @default.
- W4220953753 cites W2324576880 @default.
- W4220953753 cites W2326022514 @default.
- W4220953753 cites W2335215450 @default.
- W4220953753 cites W2343234224 @default.
- W4220953753 cites W2531088908 @default.
- W4220953753 cites W2585881976 @default.
- W4220953753 cites W2594693086 @default.
- W4220953753 cites W2625476245 @default.
- W4220953753 cites W2750659770 @default.
- W4220953753 cites W2779295346 @default.
- W4220953753 cites W2790700515 @default.
- W4220953753 cites W2793805560 @default.
- W4220953753 cites W2797402103 @default.
- W4220953753 cites W2890961624 @default.
- W4220953753 cites W2893777958 @default.
- W4220953753 cites W2911199588 @default.
- W4220953753 cites W2921484027 @default.
- W4220953753 cites W2923358787 @default.
- W4220953753 cites W2935178561 @default.
- W4220953753 cites W2953599168 @default.
- W4220953753 cites W2959034058 @default.
- W4220953753 cites W2963787603 @default.
- W4220953753 cites W2969027671 @default.
- W4220953753 cites W2977322455 @default.
- W4220953753 cites W3005740274 @default.
- W4220953753 cites W3015923818 @default.
- W4220953753 cites W3021107974 @default.
- W4220953753 cites W3023699398 @default.
- W4220953753 cites W3033588697 @default.
- W4220953753 cites W3034197579 @default.
- W4220953753 cites W3036065630 @default.
- W4220953753 cites W3039756281 @default.
- W4220953753 cites W3084134697 @default.
- W4220953753 cites W3090545357 @default.
- W4220953753 cites W3090818573 @default.
- W4220953753 cites W3099950071 @default.
- W4220953753 cites W3102656105 @default.
- W4220953753 cites W3115611223 @default.
- W4220953753 cites W3136621066 @default.
- W4220953753 cites W3217133349 @default.
- W4220953753 cites W337000869 @default.
- W4220953753 cites W4243091983 @default.
- W4220953753 doi "https://doi.org/10.1016/j.psep.2022.03.020" @default.
- W4220953753 hasPublicationYear "2022" @default.
- W4220953753 type Work @default.
- W4220953753 citedByCount "3" @default.
- W4220953753 countsByYear W42209537532023 @default.
- W4220953753 crossrefType "journal-article" @default.
- W4220953753 hasAuthorship W4220953753A5000154274 @default.
- W4220953753 hasAuthorship W4220953753A5001377818 @default.
- W4220953753 hasAuthorship W4220953753A5018479820 @default.
- W4220953753 hasAuthorship W4220953753A5034929975 @default.
- W4220953753 hasAuthorship W4220953753A5066166428 @default.
- W4220953753 hasConcept C105795698 @default.
- W4220953753 hasConcept C119857082 @default.
- W4220953753 hasConcept C12267149 @default.
- W4220953753 hasConcept C139945424 @default.
- W4220953753 hasConcept C151730666 @default.
- W4220953753 hasConcept C161790260 @default.
- W4220953753 hasConcept C162847780 @default.
- W4220953753 hasConcept C178790620 @default.