Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220953886> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4220953886 abstract "<p>The presence of subglacial sediments is important in enabling streaming ice flow and may be a critical controlling factor in determining the onset regions of ice streams. Improving our knowledge of the location of sedimentary basins underlying large ice sheets will improve our understanding of how the substrate influences the ice streams. &#160;Advancing our understanding of the interaction between subglacial sediments and ice flow is critical for predictions of ice sheet behavior and the consequences on future climate change. To date, no comprehensive distribution of onshore and offshore sedimentary basins over Antarctica has been developed. The goal of this project is to use a combination of large-scale datasets to characterize known basins and identify new sedimentary basins to produce a continent-wide mapping of sedimentary basins and provide improved basal parametrizations conditions that have the potential to support more realistic ice sheet models. The proposed work is divided into three main steps. In the first step, the Random Forest (RF), a supervised machine learning algorithm, is used to identify sedimentary basins in Antarctica. In the second step, a regression analyses between aerogravity data and topography is done to evaluate the gravity signal related to superficial heterogeneities (i.e. sediments) and compare the results to the depth of magnetic sources using the Werner deconvolution method. Last, the correlation between sedimentary basins and ice streams is investigated. Here, we will present the preliminary results from Step 1. The Random Forest uses ensemble learning method for classification and regression. The classification rules for this present work are based on the geophysical parameters of major known sedimentary basins. First we classify the known basins with all available geophysical compilations including topography, gravity and magnetic anomalies, sedimentary thickness, crustal thickness, geothermal heat flux, information on the geology, rocky type and bedrock geochemistry, and then use the Random Forest machine learning algorithm to classify the geology underneath the ice into consolidated rock and sediments based on these parameters.</p>" @default.
- W4220953886 created "2022-04-03" @default.
- W4220953886 creator A5008636658 @default.
- W4220953886 creator A5039112497 @default.
- W4220953886 creator A5060014421 @default.
- W4220953886 date "2022-03-27" @default.
- W4220953886 modified "2023-09-29" @default.
- W4220953886 title "Using random forest machine learning algorithm to help investigating the relationship between subglacial sediments and ice flow in Antarctica" @default.
- W4220953886 doi "https://doi.org/10.5194/egusphere-egu22-2658" @default.
- W4220953886 hasPublicationYear "2022" @default.
- W4220953886 type Work @default.
- W4220953886 citedByCount "0" @default.
- W4220953886 crossrefType "posted-content" @default.
- W4220953886 hasAuthorship W4220953886A5008636658 @default.
- W4220953886 hasAuthorship W4220953886A5039112497 @default.
- W4220953886 hasAuthorship W4220953886A5060014421 @default.
- W4220953886 hasConcept C109007969 @default.
- W4220953886 hasConcept C111368507 @default.
- W4220953886 hasConcept C11413529 @default.
- W4220953886 hasConcept C114793014 @default.
- W4220953886 hasConcept C119857082 @default.
- W4220953886 hasConcept C123750103 @default.
- W4220953886 hasConcept C127313418 @default.
- W4220953886 hasConcept C136894858 @default.
- W4220953886 hasConcept C151730666 @default.
- W4220953886 hasConcept C169258074 @default.
- W4220953886 hasConcept C197435368 @default.
- W4220953886 hasConcept C200646496 @default.
- W4220953886 hasConcept C2780223605 @default.
- W4220953886 hasConcept C31258907 @default.
- W4220953886 hasConcept C41008148 @default.
- W4220953886 hasConcept C42090638 @default.
- W4220953886 hasConcept C6494504 @default.
- W4220953886 hasConcept C8058405 @default.
- W4220953886 hasConcept C81820708 @default.
- W4220953886 hasConceptScore W4220953886C109007969 @default.
- W4220953886 hasConceptScore W4220953886C111368507 @default.
- W4220953886 hasConceptScore W4220953886C11413529 @default.
- W4220953886 hasConceptScore W4220953886C114793014 @default.
- W4220953886 hasConceptScore W4220953886C119857082 @default.
- W4220953886 hasConceptScore W4220953886C123750103 @default.
- W4220953886 hasConceptScore W4220953886C127313418 @default.
- W4220953886 hasConceptScore W4220953886C136894858 @default.
- W4220953886 hasConceptScore W4220953886C151730666 @default.
- W4220953886 hasConceptScore W4220953886C169258074 @default.
- W4220953886 hasConceptScore W4220953886C197435368 @default.
- W4220953886 hasConceptScore W4220953886C200646496 @default.
- W4220953886 hasConceptScore W4220953886C2780223605 @default.
- W4220953886 hasConceptScore W4220953886C31258907 @default.
- W4220953886 hasConceptScore W4220953886C41008148 @default.
- W4220953886 hasConceptScore W4220953886C42090638 @default.
- W4220953886 hasConceptScore W4220953886C6494504 @default.
- W4220953886 hasConceptScore W4220953886C8058405 @default.
- W4220953886 hasConceptScore W4220953886C81820708 @default.
- W4220953886 hasLocation W42209538861 @default.
- W4220953886 hasOpenAccess W4220953886 @default.
- W4220953886 hasPrimaryLocation W42209538861 @default.
- W4220953886 hasRelatedWork W26996340 @default.
- W4220953886 hasRelatedWork W30301213 @default.
- W4220953886 hasRelatedWork W37429846 @default.
- W4220953886 hasRelatedWork W39539776 @default.
- W4220953886 hasRelatedWork W42086076 @default.
- W4220953886 hasRelatedWork W51303978 @default.
- W4220953886 hasRelatedWork W67075188 @default.
- W4220953886 hasRelatedWork W71000980 @default.
- W4220953886 hasRelatedWork W86023056 @default.
- W4220953886 hasRelatedWork W91806299 @default.
- W4220953886 isParatext "false" @default.
- W4220953886 isRetracted "false" @default.
- W4220953886 workType "article" @default.