Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220953920> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4220953920 abstract "<p>In recent years, machine learning techniques have been widely applied in seismological data processing such as seismic event detection, phase picking, location, magnitude estimation, and further data analysis for determining source mechanisms. Especially in earthquake location, deep learning methods are used to reduce location errors compared to conventional algorithms.</p><p>In this study, we present a deep learning based epicentral distance estimation with two separate models using seismic data from two stations as input data. The first model is the P- and S-wave arrival time picking model and the second is the epicentral distance estimation model. Since the traditional epicentral distance estimation methods uses the difference in arrival times between P- and S-waves, the P- and S-wave arrival times were first predicted from three-component seismic data so that this information could be directly used as the next input data. This picking information is used as input data along with the station location in the epicentral distance estimation model to output the final epicentral distance. Since this method uses data from two stations, it has higher accuracy than epicentral distance estimation using data from a single station.</p><p>The P- and S-wave arrival time picking model was modified by referring to the ResUNet (Diakogiannis et al., 2020) structure to improve performance based on the seismic detection and phase picking model from the three-component acceleration data developed by Mousavi et al. (2020). This modified model performs feature extraction for P- and S-phase picking and includes a residual block and skip connection. The model for estimating the distance from the epicenter was constructed using a basic artificial neural network (ANN) architecture. As input data, a total of eight features were used by adding six combinations of the difference in arrival times of P-wave and S-wave in each component of the two stations and two values of the latitude and longitude difference between two stations. The ANN architecture consists of four hidden layers and the epicentral distances of the two stations are final output.</p><p>The STEAD data were used as training data and test data. The STEAD is a seismogram dataset recorded from about 450,000 global earthquakes, and among them, data with magnitudes greater than 2.5 and epicentral distances less than 400 km were selected and used. As a result of applying the trained model to the test data, the mean absolute error of the predicted epicentral distance was 6.5 km, which showed improved performance compared to the previous results. Also, since this method uses six time-differences as input data, it can provide more robust results even in the presence of random noise at the picked times.</p>" @default.
- W4220953920 created "2022-04-03" @default.
- W4220953920 creator A5016273431 @default.
- W4220953920 creator A5063529811 @default.
- W4220953920 creator A5079041147 @default.
- W4220953920 creator A5081320286 @default.
- W4220953920 creator A5088282461 @default.
- W4220953920 date "2022-03-28" @default.
- W4220953920 modified "2023-09-27" @default.
- W4220953920 title "P- and S-wave arrival picking and epicentral distance estimation of earthquakes using convolutional neural networks" @default.
- W4220953920 doi "https://doi.org/10.5194/egusphere-egu22-11098" @default.
- W4220953920 hasPublicationYear "2022" @default.
- W4220953920 type Work @default.
- W4220953920 citedByCount "0" @default.
- W4220953920 crossrefType "posted-content" @default.
- W4220953920 hasAuthorship W4220953920A5016273431 @default.
- W4220953920 hasAuthorship W4220953920A5063529811 @default.
- W4220953920 hasAuthorship W4220953920A5079041147 @default.
- W4220953920 hasAuthorship W4220953920A5081320286 @default.
- W4220953920 hasAuthorship W4220953920A5088282461 @default.
- W4220953920 hasConcept C11413529 @default.
- W4220953920 hasConcept C127313418 @default.
- W4220953920 hasConcept C127413603 @default.
- W4220953920 hasConcept C13280743 @default.
- W4220953920 hasConcept C154945302 @default.
- W4220953920 hasConcept C163150518 @default.
- W4220953920 hasConcept C165205528 @default.
- W4220953920 hasConcept C201995342 @default.
- W4220953920 hasConcept C22212356 @default.
- W4220953920 hasConcept C2780937219 @default.
- W4220953920 hasConcept C3017552255 @default.
- W4220953920 hasConcept C41008148 @default.
- W4220953920 hasConcept C555944384 @default.
- W4220953920 hasConcept C76155785 @default.
- W4220953920 hasConcept C81363708 @default.
- W4220953920 hasConcept C83176761 @default.
- W4220953920 hasConcept C96250715 @default.
- W4220953920 hasConceptScore W4220953920C11413529 @default.
- W4220953920 hasConceptScore W4220953920C127313418 @default.
- W4220953920 hasConceptScore W4220953920C127413603 @default.
- W4220953920 hasConceptScore W4220953920C13280743 @default.
- W4220953920 hasConceptScore W4220953920C154945302 @default.
- W4220953920 hasConceptScore W4220953920C163150518 @default.
- W4220953920 hasConceptScore W4220953920C165205528 @default.
- W4220953920 hasConceptScore W4220953920C201995342 @default.
- W4220953920 hasConceptScore W4220953920C22212356 @default.
- W4220953920 hasConceptScore W4220953920C2780937219 @default.
- W4220953920 hasConceptScore W4220953920C3017552255 @default.
- W4220953920 hasConceptScore W4220953920C41008148 @default.
- W4220953920 hasConceptScore W4220953920C555944384 @default.
- W4220953920 hasConceptScore W4220953920C76155785 @default.
- W4220953920 hasConceptScore W4220953920C81363708 @default.
- W4220953920 hasConceptScore W4220953920C83176761 @default.
- W4220953920 hasConceptScore W4220953920C96250715 @default.
- W4220953920 hasLocation W42209539201 @default.
- W4220953920 hasOpenAccess W4220953920 @default.
- W4220953920 hasPrimaryLocation W42209539201 @default.
- W4220953920 hasRelatedWork W1645268616 @default.
- W4220953920 hasRelatedWork W2084032944 @default.
- W4220953920 hasRelatedWork W2132947535 @default.
- W4220953920 hasRelatedWork W2189080377 @default.
- W4220953920 hasRelatedWork W2265905029 @default.
- W4220953920 hasRelatedWork W2359416987 @default.
- W4220953920 hasRelatedWork W2378724308 @default.
- W4220953920 hasRelatedWork W2388633028 @default.
- W4220953920 hasRelatedWork W3121063382 @default.
- W4220953920 hasRelatedWork W2518690273 @default.
- W4220953920 isParatext "false" @default.
- W4220953920 isRetracted "false" @default.
- W4220953920 workType "article" @default.