Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220957637> ?p ?o ?g. }
- W4220957637 abstract "Micro-bubbles and bubbly flows are widely observed and applied in chemical engineering, medicine, involves deformation, rupture, and collision of bubbles, phase mixture, etc. We study bubble dynamics by setting up two numerical simulation cases: bubbly flow with a single bubble and multiple bubbles, both confined in the microchannel, with parameters corresponding to their medical backgrounds. Both the cases have their medical background applications. Multiphase flow simulation requires high computation accuracy due to possible component losses that may be caused by sparse meshing during the computation. Hence, data-driven methods can be adopted as an useful tool. Based on physics-informed neural networks (PINNs), we propose a novel deep learning framework BubbleNet, which entails three main parts: deep neural networks (DNN) with sub nets for predicting different physics fields; the semi-physics-informed part, with only the fluid continuum condition and the pressure Poisson equation $mathcal{P}$ encoded within; the time discretized normalizer (TDN), an algorithm to normalize field data per time step before training. We apply the traditional DNN and our BubbleNet to train the coarsened simulation data and predict the physics fields of both the two bubbly flow cases. The BubbleNets are trained for both with and without $mathcal{P}$, from which we conclude that the 'physics-informed' part can serve as inner supervision. Results indicate our framework can predict the physics fields more accurately, estimating the prediction absolute errors. Our deep learning predictions outperform traditional numerical methods computed with similar data density meshing. The proposed network can potentially be applied to many other engineering fields." @default.
- W4220957637 created "2022-04-03" @default.
- W4220957637 creator A5016292174 @default.
- W4220957637 creator A5068876688 @default.
- W4220957637 creator A5084083828 @default.
- W4220957637 date "2022-03-01" @default.
- W4220957637 modified "2023-10-18" @default.
- W4220957637 title "Predicting micro-bubble dynamics with semi-physics-informed deep learning" @default.
- W4220957637 cites W1921630717 @default.
- W4220957637 cites W1982725818 @default.
- W4220957637 cites W2005623320 @default.
- W4220957637 cites W2006722217 @default.
- W4220957637 cites W2021092582 @default.
- W4220957637 cites W2023096598 @default.
- W4220957637 cites W2024087071 @default.
- W4220957637 cites W2081476890 @default.
- W4220957637 cites W2102828744 @default.
- W4220957637 cites W2139923370 @default.
- W4220957637 cites W2141813186 @default.
- W4220957637 cites W2239232218 @default.
- W4220957637 cites W2257979135 @default.
- W4220957637 cites W2313333685 @default.
- W4220957637 cites W2525748878 @default.
- W4220957637 cites W2555023220 @default.
- W4220957637 cites W2610770679 @default.
- W4220957637 cites W2742127985 @default.
- W4220957637 cites W2766447205 @default.
- W4220957637 cites W2775708988 @default.
- W4220957637 cites W2789209489 @default.
- W4220957637 cites W2899283552 @default.
- W4220957637 cites W2904616002 @default.
- W4220957637 cites W2943076420 @default.
- W4220957637 cites W2943505205 @default.
- W4220957637 cites W2960764382 @default.
- W4220957637 cites W2962760173 @default.
- W4220957637 cites W2964629181 @default.
- W4220957637 cites W2984018566 @default.
- W4220957637 cites W2998366519 @default.
- W4220957637 cites W2999044305 @default.
- W4220957637 cites W3006913750 @default.
- W4220957637 cites W3011704954 @default.
- W4220957637 cites W3014009018 @default.
- W4220957637 cites W3015619547 @default.
- W4220957637 cites W3015865829 @default.
- W4220957637 cites W3041682155 @default.
- W4220957637 cites W3046342431 @default.
- W4220957637 cites W3049757379 @default.
- W4220957637 cites W3091986675 @default.
- W4220957637 cites W3093455605 @default.
- W4220957637 cites W3098546160 @default.
- W4220957637 cites W3103390675 @default.
- W4220957637 cites W3103540983 @default.
- W4220957637 cites W3111026686 @default.
- W4220957637 cites W3133319347 @default.
- W4220957637 cites W3134515731 @default.
- W4220957637 cites W3137240924 @default.
- W4220957637 cites W3137474564 @default.
- W4220957637 cites W3163993681 @default.
- W4220957637 cites W3201460085 @default.
- W4220957637 doi "https://doi.org/10.1063/5.0079602" @default.
- W4220957637 hasPublicationYear "2022" @default.
- W4220957637 type Work @default.
- W4220957637 citedByCount "6" @default.
- W4220957637 countsByYear W42209576372022 @default.
- W4220957637 countsByYear W42209576372023 @default.
- W4220957637 crossrefType "journal-article" @default.
- W4220957637 hasAuthorship W4220957637A5016292174 @default.
- W4220957637 hasAuthorship W4220957637A5068876688 @default.
- W4220957637 hasAuthorship W4220957637A5084083828 @default.
- W4220957637 hasBestOaLocation W42209576371 @default.
- W4220957637 hasConcept C108583219 @default.
- W4220957637 hasConcept C11413529 @default.
- W4220957637 hasConcept C121332964 @default.
- W4220957637 hasConcept C121864883 @default.
- W4220957637 hasConcept C134306372 @default.
- W4220957637 hasConcept C154945302 @default.
- W4220957637 hasConcept C157915830 @default.
- W4220957637 hasConcept C202444582 @default.
- W4220957637 hasConcept C2779379648 @default.
- W4220957637 hasConcept C33923547 @default.
- W4220957637 hasConcept C38349280 @default.
- W4220957637 hasConcept C41008148 @default.
- W4220957637 hasConcept C45374587 @default.
- W4220957637 hasConcept C50644808 @default.
- W4220957637 hasConcept C57879066 @default.
- W4220957637 hasConcept C73000952 @default.
- W4220957637 hasConcept C90278072 @default.
- W4220957637 hasConcept C9652623 @default.
- W4220957637 hasConceptScore W4220957637C108583219 @default.
- W4220957637 hasConceptScore W4220957637C11413529 @default.
- W4220957637 hasConceptScore W4220957637C121332964 @default.
- W4220957637 hasConceptScore W4220957637C121864883 @default.
- W4220957637 hasConceptScore W4220957637C134306372 @default.
- W4220957637 hasConceptScore W4220957637C154945302 @default.
- W4220957637 hasConceptScore W4220957637C157915830 @default.
- W4220957637 hasConceptScore W4220957637C202444582 @default.
- W4220957637 hasConceptScore W4220957637C2779379648 @default.
- W4220957637 hasConceptScore W4220957637C33923547 @default.
- W4220957637 hasConceptScore W4220957637C38349280 @default.
- W4220957637 hasConceptScore W4220957637C41008148 @default.