Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220958093> ?p ?o ?g. }
- W4220958093 endingPage "105430" @default.
- W4220958093 startingPage "105430" @default.
- W4220958093 abstract "Quality assessment of bio-signals is important to prevent clinical misdiagnosis. With the introduction of mobile and wearable health care, it is becoming increasingly important to distinguish available signals from noise. The goal of this study was to develop a signal quality assessment technology for photoplethysmogram (PPG) widely used in wearable healthcare. In this study, we developed and verified a deep neural network (DNN)-based signal quality assessment model using about 1.6 million 5-s segment length PPG big data of about 29 GB from the MIMIC III PPG waveform database. The DNN model was implemented through a 1D convolutional neural network (CNN). The number of CNN layers, number of fully connected nodes, dropout rate, batch size, and learning rate of the model were optimized through Bayesian optimization. As a result, 6 CNN layers, 1,546 fully connected layer nodes, 825 batch size, 0.2 dropout rate, and 0.002 learning rate were needed for an optimal model. Performance metrics of the result of classifying waveform quality into 'Good' and 'Bad', the accuracy, specificity, sensitivity, area under the receiver operating curve, and area under the precision-recall curve were 0.978, 0.948, 0.993, 0.985, 0.980, and 0.969, respectively. Additionally, in the case of simulated real-time application, it was confirmed that the proposed signal quality score tracked the decrease in pulse quality well." @default.
- W4220958093 created "2022-04-03" @default.
- W4220958093 creator A5087600769 @default.
- W4220958093 date "2022-06-01" @default.
- W4220958093 modified "2023-10-10" @default.
- W4220958093 title "Deep convolutional neural network-based signal quality assessment for photoplethysmogram" @default.
- W4220958093 cites W188715143 @default.
- W4220958093 cites W1989977532 @default.
- W4220958093 cites W2010524207 @default.
- W4220958093 cites W2016300113 @default.
- W4220958093 cites W2083872334 @default.
- W4220958093 cites W2133629144 @default.
- W4220958093 cites W2145996826 @default.
- W4220958093 cites W2236403760 @default.
- W4220958093 cites W2522264526 @default.
- W4220958093 cites W2560619664 @default.
- W4220958093 cites W2780018647 @default.
- W4220958093 cites W2886149027 @default.
- W4220958093 cites W2888976212 @default.
- W4220958093 cites W2908782176 @default.
- W4220958093 cites W2931807421 @default.
- W4220958093 cites W3005358554 @default.
- W4220958093 cites W3009202705 @default.
- W4220958093 cites W3011928614 @default.
- W4220958093 cites W3109625451 @default.
- W4220958093 cites W3125720078 @default.
- W4220958093 cites W3136911529 @default.
- W4220958093 doi "https://doi.org/10.1016/j.compbiomed.2022.105430" @default.
- W4220958093 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35339844" @default.
- W4220958093 hasPublicationYear "2022" @default.
- W4220958093 type Work @default.
- W4220958093 citedByCount "6" @default.
- W4220958093 countsByYear W42209580932023 @default.
- W4220958093 crossrefType "journal-article" @default.
- W4220958093 hasAuthorship W4220958093A5087600769 @default.
- W4220958093 hasConcept C108583219 @default.
- W4220958093 hasConcept C115961682 @default.
- W4220958093 hasConcept C116390426 @default.
- W4220958093 hasConcept C119857082 @default.
- W4220958093 hasConcept C127413603 @default.
- W4220958093 hasConcept C149635348 @default.
- W4220958093 hasConcept C150594956 @default.
- W4220958093 hasConcept C153180895 @default.
- W4220958093 hasConcept C154945302 @default.
- W4220958093 hasConcept C197424946 @default.
- W4220958093 hasConcept C199360897 @default.
- W4220958093 hasConcept C21200559 @default.
- W4220958093 hasConcept C24326235 @default.
- W4220958093 hasConcept C2776145597 @default.
- W4220958093 hasConcept C2778049539 @default.
- W4220958093 hasConcept C2779843651 @default.
- W4220958093 hasConcept C41008148 @default.
- W4220958093 hasConcept C50644808 @default.
- W4220958093 hasConcept C554190296 @default.
- W4220958093 hasConcept C555944384 @default.
- W4220958093 hasConcept C76155785 @default.
- W4220958093 hasConcept C81363708 @default.
- W4220958093 hasConcept C99498987 @default.
- W4220958093 hasConceptScore W4220958093C108583219 @default.
- W4220958093 hasConceptScore W4220958093C115961682 @default.
- W4220958093 hasConceptScore W4220958093C116390426 @default.
- W4220958093 hasConceptScore W4220958093C119857082 @default.
- W4220958093 hasConceptScore W4220958093C127413603 @default.
- W4220958093 hasConceptScore W4220958093C149635348 @default.
- W4220958093 hasConceptScore W4220958093C150594956 @default.
- W4220958093 hasConceptScore W4220958093C153180895 @default.
- W4220958093 hasConceptScore W4220958093C154945302 @default.
- W4220958093 hasConceptScore W4220958093C197424946 @default.
- W4220958093 hasConceptScore W4220958093C199360897 @default.
- W4220958093 hasConceptScore W4220958093C21200559 @default.
- W4220958093 hasConceptScore W4220958093C24326235 @default.
- W4220958093 hasConceptScore W4220958093C2776145597 @default.
- W4220958093 hasConceptScore W4220958093C2778049539 @default.
- W4220958093 hasConceptScore W4220958093C2779843651 @default.
- W4220958093 hasConceptScore W4220958093C41008148 @default.
- W4220958093 hasConceptScore W4220958093C50644808 @default.
- W4220958093 hasConceptScore W4220958093C554190296 @default.
- W4220958093 hasConceptScore W4220958093C555944384 @default.
- W4220958093 hasConceptScore W4220958093C76155785 @default.
- W4220958093 hasConceptScore W4220958093C81363708 @default.
- W4220958093 hasConceptScore W4220958093C99498987 @default.
- W4220958093 hasFunder F4320321408 @default.
- W4220958093 hasFunder F4320322034 @default.
- W4220958093 hasFunder F4320322107 @default.
- W4220958093 hasFunder F4320322120 @default.
- W4220958093 hasLocation W42209580931 @default.
- W4220958093 hasLocation W42209580932 @default.
- W4220958093 hasOpenAccess W4220958093 @default.
- W4220958093 hasPrimaryLocation W42209580931 @default.
- W4220958093 hasRelatedWork W2731899572 @default.
- W4220958093 hasRelatedWork W2999805992 @default.
- W4220958093 hasRelatedWork W3116150086 @default.
- W4220958093 hasRelatedWork W3133861977 @default.
- W4220958093 hasRelatedWork W4200173597 @default.
- W4220958093 hasRelatedWork W4291897433 @default.
- W4220958093 hasRelatedWork W4312417841 @default.
- W4220958093 hasRelatedWork W4321369474 @default.
- W4220958093 hasRelatedWork W4322750901 @default.