Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220959892> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4220959892 endingPage "74" @default.
- W4220959892 startingPage "57" @default.
- W4220959892 abstract "Network intrusion detection is one of the most important components of mobile networks security. In recent years, the application of neural networks has been very popular in network intrusion detection. However, due to limited resources of IoT devices, fast detection of the intrusion requires a high accuracy neural network with a lightweight and efficient architecture. Therefore, the conventional architectures of neural networks are not suitable for intrusion detection in IoT devices due to the use of a large number of parameters in these models concerning the limited processing resources in IoT devices. This paper presents a new and lightweight architecture based on Parallel Deep Auto-Encoder (PDAE) that uses both locally and surrounding information around individual values in the feature vector. This type of separation of features allows us to increase the accuracy of the model while greatly reducing the number of parameters, memory footprint, and the need for processing power. The effectiveness of the proposed model is evaluated using KDDCup99, CICIDS2017, and UNSW-NB15 datasets and the results shows the superiority of the proposed model over the state-of-the-art algorithms in terms of both accuracy and performance." @default.
- W4220959892 created "2022-04-03" @default.
- W4220959892 creator A5002806689 @default.
- W4220959892 creator A5019590437 @default.
- W4220959892 date "2022-06-01" @default.
- W4220959892 modified "2023-10-17" @default.
- W4220959892 title "PDAE: Efficient network intrusion detection in IoT using parallel deep auto-encoders" @default.
- W4220959892 cites W2099940443 @default.
- W4220959892 cites W2296509296 @default.
- W4220959892 cites W2783741806 @default.
- W4220959892 cites W2892556724 @default.
- W4220959892 cites W2911505293 @default.
- W4220959892 cites W2913330314 @default.
- W4220959892 cites W2944210580 @default.
- W4220959892 cites W2962802821 @default.
- W4220959892 cites W2987228832 @default.
- W4220959892 cites W2995630772 @default.
- W4220959892 cites W2999472659 @default.
- W4220959892 cites W3010653946 @default.
- W4220959892 cites W3012561096 @default.
- W4220959892 cites W3016010691 @default.
- W4220959892 cites W3020687048 @default.
- W4220959892 cites W3021740526 @default.
- W4220959892 cites W3027095011 @default.
- W4220959892 cites W3035311645 @default.
- W4220959892 cites W3048313003 @default.
- W4220959892 cites W3082729101 @default.
- W4220959892 cites W3089160504 @default.
- W4220959892 cites W3092272602 @default.
- W4220959892 cites W3095531713 @default.
- W4220959892 cites W3100321043 @default.
- W4220959892 cites W3108514737 @default.
- W4220959892 doi "https://doi.org/10.1016/j.ins.2022.03.065" @default.
- W4220959892 hasPublicationYear "2022" @default.
- W4220959892 type Work @default.
- W4220959892 citedByCount "16" @default.
- W4220959892 countsByYear W42209598922022 @default.
- W4220959892 countsByYear W42209598922023 @default.
- W4220959892 crossrefType "journal-article" @default.
- W4220959892 hasAuthorship W4220959892A5002806689 @default.
- W4220959892 hasAuthorship W4220959892A5019590437 @default.
- W4220959892 hasConcept C111919701 @default.
- W4220959892 hasConcept C118505674 @default.
- W4220959892 hasConcept C124101348 @default.
- W4220959892 hasConcept C132943942 @default.
- W4220959892 hasConcept C138885662 @default.
- W4220959892 hasConcept C149635348 @default.
- W4220959892 hasConcept C151730666 @default.
- W4220959892 hasConcept C154945302 @default.
- W4220959892 hasConcept C2776401178 @default.
- W4220959892 hasConcept C35525427 @default.
- W4220959892 hasConcept C41008148 @default.
- W4220959892 hasConcept C41895202 @default.
- W4220959892 hasConcept C50644808 @default.
- W4220959892 hasConcept C74912251 @default.
- W4220959892 hasConcept C79403827 @default.
- W4220959892 hasConcept C81860439 @default.
- W4220959892 hasConcept C86803240 @default.
- W4220959892 hasConceptScore W4220959892C111919701 @default.
- W4220959892 hasConceptScore W4220959892C118505674 @default.
- W4220959892 hasConceptScore W4220959892C124101348 @default.
- W4220959892 hasConceptScore W4220959892C132943942 @default.
- W4220959892 hasConceptScore W4220959892C138885662 @default.
- W4220959892 hasConceptScore W4220959892C149635348 @default.
- W4220959892 hasConceptScore W4220959892C151730666 @default.
- W4220959892 hasConceptScore W4220959892C154945302 @default.
- W4220959892 hasConceptScore W4220959892C2776401178 @default.
- W4220959892 hasConceptScore W4220959892C35525427 @default.
- W4220959892 hasConceptScore W4220959892C41008148 @default.
- W4220959892 hasConceptScore W4220959892C41895202 @default.
- W4220959892 hasConceptScore W4220959892C50644808 @default.
- W4220959892 hasConceptScore W4220959892C74912251 @default.
- W4220959892 hasConceptScore W4220959892C79403827 @default.
- W4220959892 hasConceptScore W4220959892C81860439 @default.
- W4220959892 hasConceptScore W4220959892C86803240 @default.
- W4220959892 hasLocation W42209598921 @default.
- W4220959892 hasOpenAccess W4220959892 @default.
- W4220959892 hasPrimaryLocation W42209598921 @default.
- W4220959892 hasRelatedWork W2056851291 @default.
- W4220959892 hasRelatedWork W2110890874 @default.
- W4220959892 hasRelatedWork W2130649150 @default.
- W4220959892 hasRelatedWork W2317692656 @default.
- W4220959892 hasRelatedWork W2366221835 @default.
- W4220959892 hasRelatedWork W2380242202 @default.
- W4220959892 hasRelatedWork W2618984630 @default.
- W4220959892 hasRelatedWork W2995627643 @default.
- W4220959892 hasRelatedWork W2128973007 @default.
- W4220959892 hasRelatedWork W2189193988 @default.
- W4220959892 hasVolume "598" @default.
- W4220959892 isParatext "false" @default.
- W4220959892 isRetracted "false" @default.
- W4220959892 workType "article" @default.