Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220965917> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4220965917 abstract "Use of CRX or chest X-ray images is the only way to perform the diagnosis of certain diseases, which can be difficult at times, thus it is crucial to interpret the displayed images with hundred percent accuracy. As a result of this issue, the usage of various algorithms and techniques to diagnose diseases automatically has increased. This research paper focuses on how deep learning, specifically the Convolutional Neural Network (CNN), can be used to diagnose thoracic disorders. We proposed customized CNN models with fine tuning, and applied the entire DenseNet architecture in CNN, including DenseNet-121, DenseNet-169, and DenseNet-201. The dataset included 14 thoracic disorders with no findings, and we chose six of them (Pneumonia, Emphysema, Pneumothorax, Fibrosis, Infiltrate and Pleural Thickening). With the DenseNet-121, DenseNet-169, and DenseNet-201 design, we were able to achieve accuracy of 0.839, 0.835 and 0.830 respectively." @default.
- W4220965917 created "2022-04-03" @default.
- W4220965917 creator A5029662861 @default.
- W4220965917 creator A5030576777 @default.
- W4220965917 creator A5061748853 @default.
- W4220965917 date "2022-01-21" @default.
- W4220965917 modified "2023-10-06" @default.
- W4220965917 title "Detecting Different Thoracic Disease Using CNN-Model" @default.
- W4220965917 cites W2132193790 @default.
- W4220965917 cites W2139878679 @default.
- W4220965917 cites W2515826378 @default.
- W4220965917 cites W2608231518 @default.
- W4220965917 cites W2775469102 @default.
- W4220965917 cites W2794736759 @default.
- W4220965917 cites W2811374795 @default.
- W4220965917 cites W2884149198 @default.
- W4220965917 cites W2887196013 @default.
- W4220965917 cites W2891756914 @default.
- W4220965917 cites W2924911266 @default.
- W4220965917 cites W2962708065 @default.
- W4220965917 cites W2962975664 @default.
- W4220965917 cites W2979001271 @default.
- W4220965917 cites W2980584449 @default.
- W4220965917 cites W2996857351 @default.
- W4220965917 cites W3029443186 @default.
- W4220965917 cites W3036881855 @default.
- W4220965917 cites W3045682748 @default.
- W4220965917 cites W3101156210 @default.
- W4220965917 cites W3132123876 @default.
- W4220965917 doi "https://doi.org/10.1109/iconat53423.2022.9725940" @default.
- W4220965917 hasPublicationYear "2022" @default.
- W4220965917 type Work @default.
- W4220965917 citedByCount "2" @default.
- W4220965917 countsByYear W42209659172023 @default.
- W4220965917 crossrefType "proceedings-article" @default.
- W4220965917 hasAuthorship W4220965917A5029662861 @default.
- W4220965917 hasAuthorship W4220965917A5030576777 @default.
- W4220965917 hasAuthorship W4220965917A5061748853 @default.
- W4220965917 hasConcept C108583219 @default.
- W4220965917 hasConcept C126838900 @default.
- W4220965917 hasConcept C153180895 @default.
- W4220965917 hasConcept C154945302 @default.
- W4220965917 hasConcept C202444582 @default.
- W4220965917 hasConcept C2778329176 @default.
- W4220965917 hasConcept C33923547 @default.
- W4220965917 hasConcept C41008148 @default.
- W4220965917 hasConcept C71924100 @default.
- W4220965917 hasConcept C81363708 @default.
- W4220965917 hasConcept C9652623 @default.
- W4220965917 hasConceptScore W4220965917C108583219 @default.
- W4220965917 hasConceptScore W4220965917C126838900 @default.
- W4220965917 hasConceptScore W4220965917C153180895 @default.
- W4220965917 hasConceptScore W4220965917C154945302 @default.
- W4220965917 hasConceptScore W4220965917C202444582 @default.
- W4220965917 hasConceptScore W4220965917C2778329176 @default.
- W4220965917 hasConceptScore W4220965917C33923547 @default.
- W4220965917 hasConceptScore W4220965917C41008148 @default.
- W4220965917 hasConceptScore W4220965917C71924100 @default.
- W4220965917 hasConceptScore W4220965917C81363708 @default.
- W4220965917 hasConceptScore W4220965917C9652623 @default.
- W4220965917 hasLocation W42209659171 @default.
- W4220965917 hasOpenAccess W4220965917 @default.
- W4220965917 hasPrimaryLocation W42209659171 @default.
- W4220965917 hasRelatedWork W2731899572 @default.
- W4220965917 hasRelatedWork W2999805992 @default.
- W4220965917 hasRelatedWork W3011074480 @default.
- W4220965917 hasRelatedWork W3116150086 @default.
- W4220965917 hasRelatedWork W3133861977 @default.
- W4220965917 hasRelatedWork W3192840557 @default.
- W4220965917 hasRelatedWork W4200173597 @default.
- W4220965917 hasRelatedWork W4291897433 @default.
- W4220965917 hasRelatedWork W4312417841 @default.
- W4220965917 hasRelatedWork W4321369474 @default.
- W4220965917 isParatext "false" @default.
- W4220965917 isRetracted "false" @default.
- W4220965917 workType "article" @default.