Matches in SemOpenAlex for { <https://semopenalex.org/work/W4220966414> ?p ?o ?g. }
- W4220966414 endingPage "27" @default.
- W4220966414 startingPage "13" @default.
- W4220966414 abstract "Hydrogen (H 2 ) is known as an environmentally friendly and crucial source of energy and recently demands for this compound has increased globally. One of the main ways of production of this compound is the Water-Gas Shift (WGS) reaction which utilizes various catalysts based on the operating conditions of the process. This work presents the performance of a soft computing method named PSO-RBF to estimate carbon monoxide (CO) conversion in WGS reactions. In addition, decision tree analysis was also performed to extract the associated rules which provides the highest performance for the reaction (higher conversion of CO). Different active phase compositions and support types of catalysts were utilized for development of the PSO-RBF model. The developed model accounts for the intrinsic catalyst parameters for estimation of the reaction performance by including features such as surface area, calcination time and temperature. In addition, sensitivity analysis of the model predictions was also examined to identify useful patterns. The results showed that the PSO-RBF model can accurately predict the actual CO conversion data with overall R 2 , AARD%, and RMSE values of 0.9977, 3.93, and 0.0159, respectively. It was also observed that the decision tree model can successfully extract the rules and trends from the experimental data. The outcomes of the sensitivity analysis study revealed that the most influential parameters for the process are temperature and H 2 composition in the feed stream. This work shows the capability of soft computing methods such as the PSO-RBF and decision tree approaches for estimating better catalysts and process conditions for this crucial reaction in the environmental field. • A PSO-RBF method for hydrogen production prediction for the Water-Gas Shift reaction was proposed. • Sensitivity analysis was performed to investigate the changes in conversion of CO. • Decision tree analysis was performed to find best catalyst/reaction conditions. • The approach exhibits accurate results for different catalysts and operating conditions during the process. • The temperature and the H 2 content of the feed stream are the most significant parameters." @default.
- W4220966414 created "2022-04-03" @default.
- W4220966414 creator A5003441308 @default.
- W4220966414 creator A5070139804 @default.
- W4220966414 date "2022-07-01" @default.
- W4220966414 modified "2023-10-18" @default.
- W4220966414 title "Prediction of catalytic hydrogen production through water-gas shift reaction using soft computing approach" @default.
- W4220966414 cites W1488831428 @default.
- W4220966414 cites W1577668191 @default.
- W4220966414 cites W1968599821 @default.
- W4220966414 cites W1980326152 @default.
- W4220966414 cites W1980512153 @default.
- W4220966414 cites W1981142591 @default.
- W4220966414 cites W1981339169 @default.
- W4220966414 cites W1989603284 @default.
- W4220966414 cites W2001844508 @default.
- W4220966414 cites W2004807595 @default.
- W4220966414 cites W2009575286 @default.
- W4220966414 cites W2009724999 @default.
- W4220966414 cites W2014078639 @default.
- W4220966414 cites W2014184724 @default.
- W4220966414 cites W2015468005 @default.
- W4220966414 cites W2018724525 @default.
- W4220966414 cites W2019853123 @default.
- W4220966414 cites W2022190308 @default.
- W4220966414 cites W2023970918 @default.
- W4220966414 cites W2027001504 @default.
- W4220966414 cites W2028137150 @default.
- W4220966414 cites W2031959569 @default.
- W4220966414 cites W2032750659 @default.
- W4220966414 cites W2034350439 @default.
- W4220966414 cites W2044940438 @default.
- W4220966414 cites W2051005593 @default.
- W4220966414 cites W2067011550 @default.
- W4220966414 cites W2067470517 @default.
- W4220966414 cites W2069916167 @default.
- W4220966414 cites W2070128489 @default.
- W4220966414 cites W2073946073 @default.
- W4220966414 cites W2074158698 @default.
- W4220966414 cites W2077168717 @default.
- W4220966414 cites W2078844407 @default.
- W4220966414 cites W2085824076 @default.
- W4220966414 cites W2091808617 @default.
- W4220966414 cites W2091881056 @default.
- W4220966414 cites W2092204908 @default.
- W4220966414 cites W2096510037 @default.
- W4220966414 cites W2115220647 @default.
- W4220966414 cites W2123137684 @default.
- W4220966414 cites W2129665392 @default.
- W4220966414 cites W2133960502 @default.
- W4220966414 cites W2141644301 @default.
- W4220966414 cites W2158059962 @default.
- W4220966414 cites W2164163739 @default.
- W4220966414 cites W2314274336 @default.
- W4220966414 cites W2323062365 @default.
- W4220966414 cites W2472482432 @default.
- W4220966414 cites W2480828247 @default.
- W4220966414 cites W2538004967 @default.
- W4220966414 cites W2558510925 @default.
- W4220966414 cites W2580373995 @default.
- W4220966414 cites W2792934584 @default.
- W4220966414 cites W2918718121 @default.
- W4220966414 cites W2967078206 @default.
- W4220966414 cites W2972418846 @default.
- W4220966414 cites W2980954084 @default.
- W4220966414 cites W2985344503 @default.
- W4220966414 cites W3135003112 @default.
- W4220966414 doi "https://doi.org/10.1016/j.cherd.2022.03.040" @default.
- W4220966414 hasPublicationYear "2022" @default.
- W4220966414 type Work @default.
- W4220966414 citedByCount "0" @default.
- W4220966414 crossrefType "journal-article" @default.
- W4220966414 hasAuthorship W4220966414A5003441308 @default.
- W4220966414 hasAuthorship W4220966414A5070139804 @default.
- W4220966414 hasConcept C111919701 @default.
- W4220966414 hasConcept C115575686 @default.
- W4220966414 hasConcept C124101348 @default.
- W4220966414 hasConcept C127413603 @default.
- W4220966414 hasConcept C140073362 @default.
- W4220966414 hasConcept C154945302 @default.
- W4220966414 hasConcept C161790260 @default.
- W4220966414 hasConcept C178790620 @default.
- W4220966414 hasConcept C185592680 @default.
- W4220966414 hasConcept C186060115 @default.
- W4220966414 hasConcept C18762648 @default.
- W4220966414 hasConcept C192562407 @default.
- W4220966414 hasConcept C194439259 @default.
- W4220966414 hasConcept C202189072 @default.
- W4220966414 hasConcept C204242273 @default.
- W4220966414 hasConcept C21200559 @default.
- W4220966414 hasConcept C21880701 @default.
- W4220966414 hasConcept C24326235 @default.
- W4220966414 hasConcept C41008148 @default.
- W4220966414 hasConcept C50644808 @default.
- W4220966414 hasConcept C512735826 @default.
- W4220966414 hasConcept C512968161 @default.
- W4220966414 hasConcept C66114498 @default.
- W4220966414 hasConcept C7082614 @default.